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ABSTRACT

 3£98
This report describes procedures that have been developed for

the surface treatment of titanium alloys. It was not possible to ob-

tain conclusive information on the relative utility of the various coat-

ings. Therefore, information has been included on all coating sys-

tems for which reports of significant development work were

available, without attempting to assess the usefulness of the particu-

lar coating or to compare it with similar coatings applied by other

techniques. Coating processes which are described include me-

chanical treatments, electrochemical treatments, treatments for

applying metallic coatings other than electroplating, and treatments

for applying hard, nonmetallic coatings. Special treatments to con-

trol thermal radiation are also described.
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PREFACE

This report is one of a series of reports being prepared by

Battelle Memorial Institute_ Columbus_ Ohio_ under Contract

DA-01-02.I-AMC-II651 (Z) in the general field of materials fabrication.

This report deals with surface treatments for titanium alloys_

and is directed toward the interests of processing and manufacturing

engineers. The treatments covered in the report include mechanical

working of the surfaces_ electrochemical plating_ polishing and

anodizing_ applying metal coatings other than electrodeposits_ form-

ing nonmetallic coatings and diffusion layers_ and the coating of

titanium alloy surfaces to control thermal-radiative properties. In

general_ workable procedures are given in detail. Problem areas

are identified and recommendations for future work are made.

The intensive literature search carried out in connection with the

preparation of this report concentrated on information made avail-

able since 1960. Pre-1960 references are included where appro-

priate. In addition to the literature search_ personal contacts were

made at Battelle with a number of individuals specializing in the

various surface-treatment fields.

In accumulating the information necessary to prepare this re-

port_ the following information sources within Battelle were searched:

for the period from 1960 to the present:

Main Library

Slavic Library

Chemistry Library

Defense Metals Information Center

Atomic Energy Commission Library.

The NASA Research and Technology Program Digest Flash Index

FY 64 and the NASA Program Summary FY 65 were also searched

for leads on current programs and research reports.

In addition_ the following information centers were searched:

Redstone Scientific Information Center

Defense Documentation Center

The American Society for Metals Information

Searching Service.
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TECHNICAL MEMORANDUM X-534Z9

SURFACE TREATMENTS FOR TITANIUM ALLOYS

SUMMARY

Although titanium alloys have been generally available for only

about 15 years_ a large number of surface-hardening treatments

have been developed for use on these alloys. Most of these treat-

ments have been developed either to improve resistance to wear and

galling_ or to improve resistance to oxidation at elevated tempera-

tures. However_ a number of treatments have been designed for

other purposes_ such as to improve corrosion resistance_ radiation

characteristics_ or appearance. Unfortunately_ many more data are

available relative to coating procedures than to the serviceability of

coated parts.

This report presents a summary of the various coating pro-

cesses that have been developed for titanium alloys. Whenever they

are available_ data are also presented regarding the properties of

the coated material. However_ no attempt has been made to evaluate

the relative merits of the various coating processes for a particular

end use_ since those data which are available do not permit a valid

judgment to be made.

A limited examination has been made of the use of shot peening

to improve the properties of titanium alloys. Fatigue properties are

improved in some cases. Polishing procedures for developing high-

quality finishes are also available.

Titanium alloys are inherently difficult to electroplate due to the

tenacious oxide film that forms on the surface and the difficulty of

developing a suitable surface for plating. However_ techniques have

been developed for plating a number of metals on titanium. Methods

have also been developed for anodizing titanium alloys and for polish-

ing titanium alloys by electrochemical or chemical means.

Metallic coatings have been produced on titanium alloys by flame

spraying_ by hot dippingj and by baking metallic paints_ as well as

by electroplating processes. Hot-dip coatings of aluminum are of

some interest_ especially for improving oxidation resistance.

Baked-on gold coatings also have been used to some extent in service

to improve the heat-reflection characteristics.



The production of hard surface coatings to improve wear re-

sistance has been studied quite intensively. Titanium alloys dissolve

significant quantities of oxygen, nitrogen, and carbon. These inter-

stitial elements result in appreciable surface hardening. A variety

of procedures have been developed to control the degree of surface

hardening and to prevent roughening of the surface and distortion of

the part during treatment. Primary emphasis has been directed

toward studies bf surface coatings containing oxygen or nitrogen.

Oxygen coatings can be produced at lower temperatures, and thus,

there are fewer problems with distortion of the part. Oxygen coat-

ings are more difficult to control, however, and do not result in as

high a level of surface hardness as is observed with nitride coatings.

Sprayed carbide coatings have been used to reduce erosion of tita-

nium turbine blades, but gas carburizing has not proved to be par-

ticularly useful.

Several ceramic coatings have been developed for titanium

alloys. These are designed primarily to reduce oxidation during

processing of titanium parts. Much of the work on coatings of this

type is proprietary.

Despite the large amount of study devoted to surface treatments

for titanium alloys, this area warrants further work. In particular,

a critical comparison of the effectiveness of the various treatments

in improving the usefulness of titanium-alloy parts needs to be ex-

amined. Specific treatments that appear to warrant additional study

are so indicated in this report.

IN TRODUC TION

Surface treatments may be applied for a variety of decorative or

functional reasons, depending upon the end use of the coated article.

In the case of titanium alloys, the chief interest in surface treat-

ments has resulted from the desire either to improve wear and gall-

ing resistance or to improve oxidation resistance at high tempera-

tures. However, special coatings have been developed for several

other purposes, such as, to improve corrosion resistance, radiation

characteristics, or appearance.

Surface treatments applied to titanium alloys have been sum-

marized in recent reports by Wood (Ref. i) and by Finch and Bower

(Ref. 2). The present survey examines in greater depth the surface

treatments applied to titanium alloys, with special emphasis on work

2



reported since 1960. ]Whenever possible_ details of the coatings
procedures are given. Unfortunately_ very little information was
found regarding the behavior of the various coatings on production
titanium parts. For this reason_ it was not possible to compare
their usefulness or to present recommendations concerning the best
coating system for obtaining a desired improvement in the behavior
of titanium alloys.

Because so little data are available regarding the properties of
coated titanium alloys_ it was decided to summarize the available
information in terms of the type of coating rather than the intended
application. Thus, this report describes mechanical surface treat-
ments, electrochemical surface treatments, methods of applying
metallic coatings other than electroplating_ and methods of forming
hard, nonmetallic coatings. In one case_ that of coatings designed
to improve radiative properties, it was possible to describe coatings
designed for a specific end use. Areas where further study is needed
are also indicated.

PRETREATMENT CLEANING OF SURFACES

A good introduction to the cleaning of titanium alloys prepara-
tory to various surface treatments appears in the ASM Metals

Handbook (Ref. 3). Gleaning procedures designed to remove scale,

tarnish_ films_ and other contaminants which form on the surface of

titanium and titanium alloys during hot working_ heat treating, and

other processing operations are described. Since this reference is

usually readily available, details of the various cleaning procedures

are not reported here. Additional information of interest on grit

blasting may be found in Reference 4. Surface cleanliness is gen-

erally of considerable importance in obtaining a useful coating.

Special cleaning techniques required for specific coating treatments

are described in the appropriate sections of this report.

MECHANICAL SURFACE TREATMENTS

Mechanical surface treatments of titanium may be used for

hardening, cleaning, or polishing. Although mechanical surface

treatments have not been used extensively in practice, some in-

vestigations have been conducted to determine the effects of me-

chanical treatments on titanium alloys.

3



SHOT PEENING

Working of the alloy surface by shot peening can improve fatigue

life of titanium and titanium alloys. The Titanium Metallurgical

Laboratory Memorandum, dated November 9, 1956 (Ref. 5), points

out that the degree of cold working to be achieved by this process is

critical. Underpeening is of no value and overpeening may produce

cracks and shorten fatigue endurance.

The Western Gear Corporation phosphorus-nickel-coated gears

showed (Ref. 6) residual tensile stresses up to 40,000 psi. These

tensile stresses were replaced by compressive stresse_s induced by

cold-working methods, either by shot peening or glass peening. Both

peening treatments increased fatigue life somewhat for the coated

gears. Shot peening was the more effective.

MECHANICAL POLISHING

Success in producing a high-luster finish has been reported.

This has led at least one company into the sale of titanium jewelry.

However, very finely polished titanium has functional applications in

orthopedic implants and probably in instrumentation. A description

of one polishing procedure which has been used successfully on tita-

nium is given below (Ref. 7).

(i) After major metal-removal operations, i.e. _ filing and

grinding, the surface should be finished with No. 320

silicon-carbide, wet or dry paper. When using the car-

bide paper, it is desirable to use water to which a com-

mercial dishwashing detergent has been added in the

proportions of approximately 1 teaspoon per 1/2 gallon

of water. This solution will prevent paper clog-up and

promote faster cutting action.

(2) Follow the use of No. 320 paper with a No. 400 (or 600)

grade, again using the detergent and water solution.

(3) Wash metal parts thoroughly in a detergent and water

solution to remove traces of abrasive grains.

(4) Parts can now be semipolished on a polishing machine

using a jeweler's grade of tripoli on a soft bristle

brush. The tripoli which proved best is a brown grade

of tripoli used in polishing p.recious metals. Robert's

4



"Bright Boy", an abrasive rubber available in blocks or
wheels, may also be used.

(5) After semipolishing, buff the parts using tripoli on a

soft-muslin buffing wheel. For orthopedic work, the

polishing with tripoli on soft buffs may be sufficient.

However, if a higher degree of finish is desired, parts

should be washed again with a detergent solution.

(6) Final high finish can easily be obtained using jeweler's

water-soluble rouge on a soft flannel buff. "Ruby

powder" may also be used. A paste should be made

and applied to the work rather than to the wheel.

Caution should be used when buffing titanium. If excessive

force is used, the compound has a tendency to smear and produce a

clouded finish. The compounds mentioned above do not require

excessively high pressures of work on the buff or brushing wheel.

Polishing may also be done by the electrochemical procedure de-

scribed in the section, Electrochemical and Chemical Polishing.

ELECTROCHEMICAL SURFACE TREATMENTS

PLATING PROCEDURES

Conventional methods of plating on common metals are not com-

pletely satisfactory on titanium (Ref. 8). Titanium is covered with a

thin, natural oxide film that re-forms almost instantly when a cleaned

surface is exposed to air or water. As with other metals that form

similar films, e.g., aluminum and magnesium, adherent electro-

deposits can be obtained only if this film is either removed for a suf-

ficient time to permit an initial electrodeposit, or if it is replaced

by another film that does not interfere with adhesion, of if it is in-

corporated into the deposit in a compatible manner. Another tech-

nique, which is less satisfactory, is to etch the metal surface

severely and depend on mechanical keying to supply the bond. In this

latter technique the bond obtained is strictly mechanical, and the

process should be applicable to all alloys and all electrodeposits.

Of course, severe etching cannot be used where the attendant surface

roughening and the loss of metal are not permissible. However_

some degree of etch roughening is associated with all chemical and

electrochemical preparation for plating.



The essential details as assembled by Wood (Ref. i) on various

procedures for plating on titanium are given in Tables I through V

(Refs. 9-Z8). The subjects covered include anodic etching and zinc

strike plating in ethylene glycol solutions_ activation of titanium in

chromic and acetic acid-fluoride baths and in hot hydrochloric acid

solutions_ and plating of nickel-phosphorus alloy on vapor-blasted

titanium. Several of the same processes were described in a 1960

survey by Harding {Ref. 8). Several newer techniques developed for

plating titanium alloys are discussed below.

W. G. Lee (Ref. 29) patented a process for plating on the Group

IV B metals: titanium_ zirconium_ and hafnium. The parts were first

pickled in the following solution for I0 to 15 seconds.

HCI (18 ° Baume or 30%)

(70%)
FeCI 3 -6HzO

900 cc

100 cc

50g

After rinsing_ the parts were pickled a second time in the same

solution_ rinsed_ and electroless nickel plated in conventional solu-

tions. The parts were then baked at 800 F.

Foisel and Ellmers (Ref. 30) patented a process in which the

titanium part is etched in a solution containing trivalent chromium

ions and fluoride ions. A typical solution is

CrF 3 40 g/l

HCI (36°/0) 40 ml/l

Temperature 160 F

Time 3 minute s

After rinsing_ the part was nickel plated in a Watts bath and

baked at 750 F for 30 minutes. The hydrochloric acid etch tends to

introduce hydrogen into titanium. The Ti-I 3V-I 1Cr-3AI alloy in

particular will absorb large quantities of hydrogen. This may be

evolved during subsequent nickel plating and cause blistering or em-

brittlement of the base metal depending on its susceptibility.

Good adhesion of electrodeposits to a Ti-5AI alloy was obtained

after pickling the metal in concentrated hydrochloric acid at room

temperature for I. 5 to Z hours (Ref. 31). The surface of the titanium

specimens became slightly rough_ with a thin layer of smut which was

easily dissolved in a solution of 185 to Z00-ml/l hydrofluoric acid

(40 per cent) and 8 to 10-ml/l nitric acid (70 per cent). After

6



TABLE L VARIOUS TECHNIQUES FOR ELECTROPLATINO ON TITANIUM

Titanium

Alloy Preparation for plating and Referent

Purpose Considered Po stplating Treatment Plat/rig Co*nznent s Number

Method development Not specified Degrease, activate in solutlon of Copper plate: Copper sulfate- No data on evaluation. 9

patent stannous chloride, copper, Rochelle re%Its- triethanola-

coat by chemical reduce/on *nine bath for chenlical redt_c-

tion; cyanide copper bath at

pH 10

Ca drniurn plate No_zdhe rent. I0Cadmiun% coating for

antisiezing coating

on titanium bolts

i Nickel-phosphide

and cobalt-

pho apkide coating

on molybdenum,

titanium and

zirconium

Nickel and iron

coating on metals

of Groups IV, V,

and VI

Not specified Vactluzn evaporate films of

copper, nickel, and cadnliu-n_

on titanium

Not specified Preparation not specified. Heat Plating bath: 50 to 45-g/I

treatment at 1112 to Z012 F nickel chloride and phosph/te

! (600 to 1100 C) in nonoxidizmg or cobalt chloride and

atmosphere to melt the phosphite

phosphide coating

Not specified

Brazing of titanium Not specified

Roll cladding

titanium- clad

steel

Unalloyed

Brazing Not specified

Wire drawing Unalloyed

NAB scale

Cathodic treatment in acid or

alkaline solutions to produce

metal "hydr/deA"-an I.he Jur_ace

before plating. Vacuum fire at

842 to 1582 F to improve the

as-plated adhesion

A4etal deposition from chloride

salts onto titanium surfaces as

a basis for si/ver brazing

(i) Solvent clean

(Z) Alkaline clean

(3) Rinae

(4) Activation etch

HNO 3 - 10%

HF - i to 2%

Room temperature,

i tO 2 rain

(5) Cold rinse and plate

Pickle in HF-HBF 4 solution

(i) Remove heavy scale from

wire

De scaling bath

NaOH - 48%

KOH - 4%

Bal NaNO 3

900 F, l to 6 rain

(2) Water quench

(3) Remove resldual scale

(a) Hot aqua regia. 5 mln

(b) Rinse

(c] HNO 3 - 20%

HF - 2%

{4) Activate

HISO 4 - 25%, hot

5 to 10 rain

(5) Outgas (vacuum anneal)

No data. 11

Nickel plate in phi4, Watts

type of nickel bath - 0.5 m/h

iron plate in pH 4, iron

sulfate-chloride bath - 0.3

mil

Silver, copper, manganese,

tin coatings

Nickel: Watts type of bath

pH Z. 5

Iron: Hot FeCl 2 - CaCi2,

pH 1.0

Chromium: Chr omic- sulfuric

acid bath

Copper: Acid copper sulfate

Silver: Cyanide strike and

plate

Cobalt: Watts-type bath,

pHS. 0

Silver plate: AgBF4-HBF 4 bath

Copper plate 0.3 to 0.6 rail

Adherent to a bend test_ 12

knife test, and chisel test.

Metal-halide fluxing principle 13

established as a basis for silver

and silver-solder brazing-

Roll clad titanium- steel- titanium 14

sandwich: effectiveness of various

bonding metals:

Ag + Ni = best bond

Silver poor bond to steel.

Be st

Plate, Temp Bored to Titanium
Iron 1400 Brittle

Nickel 1300 Better than iron

Cobalt 1450 Good

Chromium 2000 Hard, brittle

Copper 1500 Fair

Silve _ braze.

Copper recommended for drawing wire.

Copper stripped for intermediate

annealing operations and replate_

15
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TABLE l/. ELECTROPLATING ON TITANIUM BASED ON ANODIC ETCHING AND ZINC STRIKE PLATING IN ETHYLENE GLYCOL SOLUTIONS

Titanium

Alloy Preparation for Plating and

Purpose Considered Postplating Treatment Plating

Reference

Comment s Number

Development of ARL Unalloyed Zinc Strike

procedure 4Al-4A£n Ethylene glycol- 87.5%

ZnC1 z - 0.5%

HF - 4 to 6%

HzO - 6%

Room temperature

5 amp/sq ft, 5 rnin

Anodic Etch A

Ethylene glycol - 79%

HF - 15%

HzO - 6%

130 to 140 F

50 amp/sq ft anoaic,

15 to 30 rain

Anodic Etch B

H3PO 4 - 53.9%

HF - 12.5%

NH4FHF - 15.5%

HzO - 18.1%

95-115 F

30 to 50 amp/sq ft,

15 to 30 rnin

Lubrication of Unalloyed (i) Preclean I-INO3-HF

titanium balls 4Ai-41Vin (Z) Rinse

Z. 8Cr-i. 5Fe (3) Ethylene glycol rinse

3AI-5Cr (4) Etch anodical!y

4AI-4V Ethylene glycol - 800 rnl/l

6Al-4V HF - Z00 ml/1

ZnF 2 - 100 ml/l

48 amp/sq ft

Z0 rain

(5) Rinse quickly

(6) Iron plate and carburize

Electroplated Not specified Cathodic electrolysis

braze metals Ethylene glycol - 800 rnl/1

40% HF - ZOO ml/l

ZnF z - 100 g/l

70 to 80 F

6 volts

about I0 amp/sq ft

5 to i0 rain

Copper Plating:

Strike

Cu--'--_N - 25 g/1

NaCN - 34 g/1

NazCO 3 - 15 g/l

Room temperature

50 amp/sq ft reduced to

15 amp/sq ft, 3 to 5 rain

Plate

Cu--'--'(BF4) Z-448 g/1

H3BF _ to pH 0.6

Room temperature

50 amp/sq ft for 10 rain/

0. 0005 inch

100 amp/sq ft for 40 rain/

0. 004 inch

Iron plating

FeSO4"7HzO- 300 g/l

FeCIz. 4HzO - 4Z g/l

(NH4)zSO 4 15 g/1

NaCOOH 15 g/1

H3BO 3 30 g/1

140 F, Z0 amp/sq ft

Z mils, Z hr, pH 4. I

Conventional plating for

copper, chromiurn_ nickel,

tin, silver, and cadmium.

Successive layers of silver-

copper and zinc or silver

and brass were plated to

provide 60Ag- 32Cu-SZn

braze layer

Adherent copper deposits; best anodic

Etch A. Fairly adherent with anodic

Etch B and zinc strike plate.

Cadmium, silver, and nickel plates

"on titanium using ARL anodic etch

and copper plating method passed

bend test, heating test in 400 F oil,

and heating test in gas-burner flame.

Carburized iron plate 1600 F,

Z hr; no evidence of blistering,

cracking, or peeling.

Lap joint of 60Ag-3ZCu-8Zn brazing

layer. Braze at 800 C for 30 rnin.

Braze joint strength Z kg/mm 2 of

contact area.

17

18

19
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TABLE IlL ELECTROPLATING ON TITANIUM ACTIVATED llq CHROM/C ACID-FLUORIDE AND ACETIC ACID-FLUORIDE BATHS

Tita_urn Reference

Alloy Preparation for Plating and

Purpose Considered po_l _tl, Z Treatment plating Comment s Number

Plating hard chron_urn 3Al-SCr - " Prior to etching immerse in 60_ Copper plate in acid copper Copper adherent to soldered-wire 21

and copper 6AI-4V HF - ZS0 rnl/Ij 69_ HNO 3 - sulfate bath. Chromium plate peel test. Chromium adherent

Menasco's method 4A1-4Mn 750 ml/1 _ntil red fumes appear; in 250 g/l CrO3-H2SO4 kith, to steel-ball indentation test.
rinse in distilled water. 3 arnp/sq in., 130 F. Chromium plated 5Al_SCr alloy

Irnnlerse in hot etchant of tested in bearing-journal test

against aluminum-bronze shoe,
NazCrzOy-HF-HzO at ZI0 F
for Z0 rnin; rinse in distilled 11,000-psi load. Chromium

water; plate, was not applied satisfactorily to

Bath for 5Al-SCr alloy Ti-8_In alloy.

NazCrzO 7. 2H20 - 400 g/l

60_ HF - Z8 n_//1

Bath for 6AI-4V and 4Ai-4Mn

,.o

alloys

-N"azCrzO_.ZHzO- z8o g/1
60% HF - 50 g/1

Distilled water to make up

baths

Plating low- Unalloyed Immersion etch: h-nrnerse in Chromium platin_ Electrolytic-etch treatment produced

contraction chromic acid-hydrofluoric _¢id CrO - 400 g/l best as-plated adherence. Heat

chromium and etchant at ambient temperature H2SO 4 - 4 g/1 treatment required for best bonding

copper. NBSts for 2 to 4 rain prior to chromium 188 F - 8 amp/sq in. of copper and chromium plates to

method plating. Chromium plate without titanium. Chromium adherence, up
Bath rinising after immersion to 18,000 psi; fractures in chromium

_O 3 - 136 g/1 etch. Chromium plate plate. Copper adherence about

48_ HF - Z20 rnl/l after electrolytic etch. 8,000 psi.

Distilled water-b._lance Copper plate in acid

Electrolytic etch: Immerse in _ulfate bath after cathodic

acetic acid-hydrofluoric acid treatment in electrolytic

solution for 10 to 15 rain etch bath. Copper plate in

followed by electrolytic treat- cyanide bath after anodic

rnent at about 20 arnp/sq ft using treatment in electrolyt/c

60 cycl eac for lO rnin prior to etch bath.

chromium plating.

Bath

--G_acial acetic acid - 875 ml/l

48% HF - 125 ml/l

Avoid dilution, use at 120 F

Heat treat at 1472 F in helium for

2 rnin.

Electrolytic etch similar to

above (decreased water

content)

Glacial acetic acid - 875 g/l

Acetic anhydride - i00 g/l

60%HF - iZ5 g/l

Immersion 10 to 15 rain

Electrolytic 15 to 30 min

60 cycle ac - 40 volts

0.05 tO 0. l amp/sq in.

H3PO 4 - 85%

20 tO ii0 volts

i tO 2 amp/sq in. max/mum

decreasing to 0.05 amp/sq in.

Protective coatings 6AI-4V

for titanium tO

prevent stress

corrosion in dry

salt at 700 F

Chromium platin_

CrO 3 - Z50 g/l

HzSO 4 - 2.5 g/l

130to 150 F_ 1 tO Z amp/sq in.

Silver platin_

AECN ° 30 g/l

KCN - 56 g/I

KzCO 3 -.45 g/1

72 tO 78 F, I0 amp/sq it

NiSO 4. 7HzO - 240 g/l

NiCIz. 6HZO - 45 g/l

H3BO 3 30 g/l

150 to 160 F, 38 amp/sq ft

KAu(CN)z - 8 dwt/l

Free CN - 30 g/l

K2CO 3 - 15 g/l

KBPO 4 - 30 g/l

150 F, 5 amp/sq ft

Chromium and nickel adherent.

Cold and silver moderately adherent.

One rail of nickel, anodized coating,

&nd conversion coatings plus silicone

resins passed 500-hr lab test in dry

salt at 700 F. C_her coatings

cracked.
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TABLE IV. NICKEL-PHOSPHORUS ALLOY ON VAPOR-BLASTED TITANIUM

Purpose

Titanium

Alloy

Considered

Preparation for Plating and

Postplating Treatment Plating Comments

Reference

Number

_Vear- resistant coating

for titanium gears

Process specification for

electroless nickel coat-

ing on titanium

3AI-5Cr

2Cr-gFe-ZMo

4AI-4Mn

6AI-4V

Unalloyed

Not specified

Degrease; vapor blast (keep wet);

rinse and brush clean of vapor

blast slurry;.activate - 150 F

acidified solution of nickel

chloride, immersion for 2 rain. ;

electroless-nickel plate; heat to

1500 to 1600 F by high-frequency

induction; water quench; age

harden in air furnace at 900 F

for 4 hr; air cool; and shot peen

Vapor blast; electroless-nickel

plate immediately; heat treat

in vacuum to 1500 F, 30 rain

at 1500 for l-rail coating, 1 hr

for I to 2-rail coating; cool at

a rate of i00 F/hr to 900 F

Alkaline-citrate, electroless

nickel bath (National Bureau

of Standards):

NiCI 2.6HzO - 30 g/l

NHdCI - 50 g/l

NaCl - 5 g/l

Na3C6H5Oy. 2H20 - i00 g/l

NaH2PO2. H20 - 10 g/1

pH: 8 to 9

Temp: 190 F

Plating rate: 0.5 mil/hr

Nickel-phosphorus alloy; up

to 2 mils in thickness

Uniform coating over gear surface;

diffusion alloy with titanium

beneficial; no instances of scoring

due to lubrication failure. Failed

ultimately by pitting, or bending

fatigue at such load levels as to

compare with precision case-

hardened steel gears

After diffusion, the nickel and

titanium have diffused to provide

a nickel-titanium alloy on the

surface. The alloy is somewhat

harder than the titanium and has

less tendency to gall. It has suffi-

cient ductility to allow yielding

without cracking
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TABLE V. ELECTROPLATING ON TITANIUM ACTIVATED IN HOT HYDROCHLORIC ACID SOLUTIONS

Purpose

Titanium

Alloy Preparation for Plating and

Considered Postplating Treatment Plating Comments

Reference

Number

• ctivating titanium for

plating

Cadmium-coated ti-

tanium screws to

fasten aluminum

structure

Evaluate platin_ process

and brazing of titanium

_-valuate methods for

coating aluminum and

titanium propeller

blades

Titanium-base

alloys

RS-120

6AI-4V

4AI-4Mn

Unalloyed

Unalloyed

8Mn

Immerse in concentrated hydro-

chloric acid at 194 to 212 F for

5 to 15 'min

Immerse in I:I hydrochloric

acid at 160 F for 5 min, rinse

in distilled water

Activate in boiling hydrochloric

acid, rinse, plate, and heat

treat. Recornn_ended heat

treating conditions:
Chromium-1000 F - I hr

Nickel-900 F - i hr

Iron-850 F - I hr

Silver-Brazing temperature

(time not indicated)

Activate in boiling hydrochloric

acid, iron strike plate, and

nickel plate over iron-plated

titanium. Nickel plate over

Wood's-nickel strike plate.

Chemical activation in HBS

bath: CRO5-250 g/l, 48_e I-IF -

220 rrd/l and chromium plating

plus heat treatment at 1472 F

for 2 rain in helium

Silver plate No data

Nickel strike plate

", NiC12. 6H20 - 300 g/l

HsBO 3 - 30 g/l

pH - 2.0

Temperature - 120tG 160F

Current density - Z5 to I00

amp/sq ft

Cadmium plate

CdO - 26 g/l

NaCH - 128 g/l

Temperature - 7Oto 100F

Current density - 10to 50 amp/

sq ft

Voltage - i to 4 volts

Cr-Unichrome CR i I0

Fe-lron chloride (no rinse)

Hi-Nickel sulfamate

Ag-Silver strike and plate

Iron-chloride strike bath at

195 to 210 F. SuHamate

nickel plate 5 or I0 mils

.in thickness.

Low contraction chromium:

CrO 3 - 250 g/l, HzSO 4

3.83 g/l 185 F, 8 arnp/sq in.,

30min

Cadmium OK on Ti-6AI-4V

and Ti-4AI-4Mn. Blisters

and pits in cadmium on

unalloyed titanium.

Change in hardness due to plating

and heat-treating temperatures

Chromium-1000 F - no change

Iron- 1000 F - no change

Chromium-1200 F - increase of

80 KHN

Iron-1700 F - increase of

160 KHN

Semi-adherent plate as plated

Heating to 1800 F did not blister

plates.
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pickling, the metal was activated in concentrated hydrochloric acid

and was nickel plated in a bright nickel bath with the addition of Z to

4-g/l naphthalenedisulfonic acid at room temperature and a current

density of 0.5 to Z amp/sq ft. This method is not suitable for plating

polished titanium because the surface becomes somewhat rough as a

result of pickling.

Halpert (Ref. 3Z), in his patent, claims a process for plating on

titanium in which the part is immersed in a 15-ml/l solution of 48 per

cent hydrofluoric acid until a purple film forms. After rinsing_ the

part is plated with nicke!_ cobalt, or a nickel-cobalt alloy from a

sulfate solution. Harding (Ref. 8) made a few attempts to apply this

process without success.

A process consisting of anodic activation in an acetic acid-

hydrofluoric acid solution followed by conventional electroplating was

usedby Schlosser and Zowery (Ref. 33) to produce adherent coatings

on Ti-6AI-4V alloy. The coatings appeared to afford some protection

to the alloy substrate from reactions with LOX under impact. The

40-minute activation treatment used may leave the titanium surface

roughened but this may be alleviated by shortening the treatment. An

activation treatment of as little as Z minutes still results in excellent

plating adherence.

SPECIFIC METAL PLATES

Nickel. Two types of electroless-nickel-plating solutions

that may be used to plate titanium alloys are given in Table VI (Ref. 8).

TABLE VI. ELECTROLESS-NICKEL BATHS

Concentration(a), in g/1

Constituents Acid Process Alkaline Process

Nickel chloride -- 30

Nickel sulfate 80 -"

Sodium hypophosphite 24 10
Sodium acetate 12 --

Boric acid 8 "-

Ammonium chloride 6 50

pH 4.8 to 5.3 8 to 10

iTemperature 200 F 195 F

(a) Concentrations are in terms of the usual hydrated forms of the salts.
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Since titanium will not catalyze the deposition of nickel_ plating

may be started by making the part cathodic for about 5 seconds.

Preplates as thin as 0.0Z mil produced by this process permit excel-

lent adhesion of other plates_ e.g. _ gold. Relatively thick preplates

of about 0.3 mil also may be produced.

As -deposited electroless nickel has adequate adhesion for nor-

mal handling but will not hold up under a bend test. Excellent ad-

hesion is achieved by heat treating to cause partial diffusion of nickel

into the titanium. Vacuum heat treatment at IZ50 to 1550 F for

4 hours is recommended. Diffusion layers from 3 to 6 mils thick

result at 1550 F. Treatment is an argon atmosphere at about i000 F

for 1 hour also gives good adhesion. Minimum conditions for satis-

factory adhesion with the argon atmosphere appear to be 15 minutes

at 750 F.

Neither electrodeposited nor electroless nickel (Ni-8P alloy)

possesses good adhesion without subsequent heat treatment to alloy

the nickel with the titanium. The method of preparing titanium sur-

faces for nickel plating is extremely important in influencing the

as-plated adhesion which, in turn, will influence the bond after heat

treatment (Ref. 31).

Electroless-nickel plates also were reported (Ref. 34) as well

bonded after induction heating at 1050 ± 50 F. However, the experi-

ence of Dumnikov (Ref. 31) has indicated that adherent electroless-

nickel coatings_ regardless of the thickness (0. Z to Z.0 mils), were

very brittle and crumbled in bend testing (possibly due to oxygen

embrittlement resulting from induction heating under normal atmo-

spheric conditions ).

Another method of bonding electroless nickel to titanium involves

a specific heating cycle to 10Z0 F, then to 1470 F and 1830 F, fol-

lowed by quenching. Of course, the heat treatment must be compati-

ble with the heat treatment which is optimum for a given alloy.

A method for the production of an adherent nickel electrodeposit

on titanium has been presented by Babkes (Ref. 35). The system was

used to build up overmachined parts and to obtain improved finish on

cases of gas floating gyros. The program included a preplate of

electroless nickel followed by a bright-nickel electroplate or a con-

ventional rhodium plate. The plated titanium cases were polished

lightly, then color buffed to the desired surface finish.
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Conventional plating cycles make it difficult to obtain an adherent

plate on titanium because of the speed with which a surface film

forms. Thereforej it must be stressed that parts should be trans-

ferred from tank to tank as rapidly as possible. The following pro-

cess cycle was found to be satisfactory by Babkes (Ref. 35).

(i) Rack parts on carbon steel or stainless steel racks and

vapor degrease

(Z) Clean in a nonetching alkaline cleaner

(3) Rinse in cold water

(4) Rinse in hot water

(5) Immerse in mixture of 1 part 60 per cent hydrofluoric

acid and 3 parts 69 per cent nitric acid until red fumes

are evolved

(6) Rinse in distilled or deionized water

(7) Immerse in a solution of 1 part sodium dichromate and

1 part hydrofluoric acid in distilled water for 20 min-

utes at 180 to ZlZ F

(8) Rinse in cold distilled water

(9) Place immediately in electroless-nickel bath of the fol-

lowing composition:

Nickel chloride

Sodium hypophosphite

Sodium citrate

Temperature

pH

80 oz/gal

I. 33 oz/gal

I. 33 oz/gal

180 to 195 F

4.0to 4.5

A deposit of approximately 0. 3-rail thickness will be

obtained in 30 minutes. (Container should be glass or

porcelain. ) To obtain bright deposit_ I/Z oz/gal of

sodium hypophosphite is added after 4 hours of opera-

tion. Sodium hydroxide is added to maintain pH at 4.0

to 4.5. The bath should be discarded after 8 hours of

operation.

14



(lO)

(11)

Rinse in cold water

Place in bright-nickel-electroplating bath for length of

time needed to form coating of specified thickness

(1g) Rinse in cold water

(13) Plate in conventional bath for the desired metal.

McGargar, Pohl, Hyink, and Hanrahan (Ref. 36) developed a

procedure for plating titanium gears with electroless nickel. The

titanium parts were first vapor degreased," then vapor blasted,

quickly rinsed and brushed free of abrasive, and immersed in an

alkaling electroless-nickel-plating bath. If necessary, deposition

was initiated by momentarily making the part cathodic. After the

desired thickness of nickel was deposited, the pa£ts were vacuum

baked at 1550 F for 4 hours. This operation improved the adhesion

by causing a degree of interdiffusion of the nickel and the titanium.

In order to improve the fatigue strength of the parts, they were then

shot peened, an operation that also served as a check of the plating

adhesion. The alloys studied were commercially pure titanium,

Ti-5AI-ZCr-ZFe-ZMo, Ti-ZCr-ZFe-gMo, Ti-4AI-4Mn, and

Ti-Z. 5AI- I6V.

Levy and Romulo (Ref. 37) used this process to produce non-

galling and nonseizing surfaces on titanium parts of Army weapons.

They added a Z-minute activation dip in acidified nickel chloride be-

fore electroless-nickel plating, and aged the plated parts for 24 hours

at room temperature before heat treating. The alloys they worked

with were Ti-5AI'Z. 8Cr-1.5Fe, Ti-ZCr-ZFe-ZMo, and Ti-6A1-4V.

By the proper choice of grit, the vapor-blast process will pro-

duce a wide range of surface finishes. If roughening of the surface

must be avoided, the grit mesh size should be finer than 1000 as

illustrated by Harding's data (Ref. 8) given in Table VII. Results will

vary, of course, with alloy and nature of the abrasive. After abra-

sion, some workers have started electroless-nickel plating within 15

seconds. However, others have allowed parts to remain in a water

slurry of abrasive for 10 minutes followed by an acidified nickel-

chloride dip, or else, have rinsed parts to remove abrasive and

stored the parts in deionized water for up to 40 minutes before

plating.

15



TABLE VII. EFFECT OF VAPOR BLAST ON SURFACE FINISH

Pressure: 80 psi; nozzle size: 3/16 inch; blast distance: 2 inches;

blast angle: 70 deg (approximate); and blast time: 2 minutes.

Grit( a ) Size

Initial Finish Final Finish Finish Change

RMS, RMS, RMS,
microinches microinches microinches

200 6.5 17.5 +11.0

325 7.0 9.0 +2.0

625 6.0 7.0 +1.0

1250 8.0 '7.5 -0.5

5000 7.0 6.5 -0.5

(a) Grit was ground quartz and decomposed quartz,

Chromium. Different titanium alloys present different

cleaning problems and require individual approaches. A method for

activating Ti-4AI-41VIn and Ti-6AI-4V alloys was reported as suc-

cessful for chromium plating (Ref. 38). Parts are immersed in the

following solution at room temperature to evolution of red fumes:

1 part by volume hydrofluoric acid (60 per cent) and 3 parts by vol-

ume nitric acid (69 per cent). Parts are then thoroughly rinsed

(preferably by spray) with distilled or deionized water, and are

treated in the following solution: 33-oz/gal sodium dichromate, 6.2-

fl oz/gal hydrofluoric acid (60 per cent), balance distilled or de-

ionized water. The temperature is 180 F to boiling, and the immer-

sion time is 20 minutes. This treatment is followed by a cold-water

rinse. Chromium deposits plated from a standard bath after this

activating procedure were of a good quality and possessed good

adhe sion.

Another method (Ref. 22) of activating titanium prior to chro-

mium plating produces a temporary titanium-fluoride coating which

protects commercially pure titanium (99.0 per cent) during transfer

from the activating solution to the chromium-plating tank. Parts are

first degreased, scrubbed with pumice, and etched in a solution con-

taining 9-m!/l concentrated HNO 3 and 185-mi/I hydrofluoric acid

(48 per cent). Following this cleaning, parts are dried and treated

at room temperature in a solution of 125-mi hydrofluoric acid (48 per

cent) per liter of acetic acid for i0 to 15 minutes without current_
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followed by an electrolytic treatment (40 volts_ 60 cycles alternating

current_ 1.5 to 3.0 amp/sq ft) for I0 minutes in the same solution

(the temperature may rise to 120 F). Parts are then rapidly rinsed

and plated in a standard chromium-plating bath containing 400-g/l

chromic acid and 4-g/l concentrated sulfuric acid (185 F_ current

density 120 amp/dmZ). Chromium deposits produced by this method

possessed good adhesion_ which was strengthened by heat treating in

a helium atmosphere at 147_0 F for Z minutes. The bond strength

(measured by peel-testing samples that were plated with about l-rail-

thick chromium on the titanium_ and then plated with about 6 mils of

nickel over the chromium deposit) ranged from 4000 to 18_000 psi.

Fracture occurred in the chromium plate.

Chromium (0.6 rail) plated on anodized or zinc-strike-plated

titanium was reported as adherent (Ref. 39). Chromium plated over

nickel plate on a third metal coating on titanium has also been re-

ported as successful (Ref. 40)._

Copper and Brass. Copper was successfully plated (Ref.

on titanium that had been electrochemically etched to provide me-

chanical bonding of the electroplated metal. The electrolytic etch

was accomplished in an ethylene glycol-zinc chloride-hydrofluoric

acid solution.

17)

Copper deposits of l-rail thickness_ applied from standard baths

on Ti-41KI-41VIn_ Ti-6AI-4V_ and Ti-3Ai-5Cr alloys using the same

preplate treatments as for chromium plating (Ref. 38)_ possessed

good adhesion of an order greater than that of 60Sn-40Pb solder to

copper_ and were capable of withstanding the heat of a soldering iron.

Copper plated on titanium according to the method used for chro-

mium plating (Ref. ZZ) was not adherent in the as-plated condition but

acquired fair adhesion after treating for I0 minutes at 930 F_ or

1 minute at 1470 F_ in helium. The bond strength_ as measured by a

soft-solder peel test_ was on the order of 8000 to 9000 psi. Rupture

occurred in a weak titanium-copper compound layer.

Soviet scientists have developed a method (Ref. 41) of brass

plating the surfaces of titanium components. The method uses a

combination of electroplating and a subsequent diffusion treatment_

and produces a deposit with good adhesion and the antifriction prop-

erties of brass.

The first step in the treatment is the preparation of the titanium

surface before electroplating. Before pickling_ the surface of the

17



specimen is degreased with chalk and washed in water. Trials with
several methods of pickling have shown that a satisfactory surface
preparation is obtained by pickling in concentrated hydrochloric acid
at a temperature of 60 F for 1 hour. Following earlier investigations
by Japanese scientists_ it was concluded that a protective film con-
sisting of titanium hydride is formedj which prevents oxidation and
possesses good conductivity.

Copper "platlng was carried out in a standard acid electrolyte
containing copper sulfate and sulfuric acid. Plating was carried out
at a temperature of 64 to 68 F and a current density of 1 to Z amp/
sq. din.

After a series of tests_ it was found that a special technique was
required to obtain copper deposits of arbitrary thickness with good
adhesion. Adeposit of 0.6 to 0.8 mil was plated. The specimen
was then subjected to vacuum annealing (at less than 1 micron
mercury) at a temperature of 1470 F for 1 hour which accomplishes
hydrogen removal as well as diffusion of copper into titanium. Addi-
tional copper can be deposited to any desired thickness after the
treatment and passivation of the specimen in a solution of nitric and
hydrochloric acids. The total copper deposit can reach 40 mils.

The copper deposit was converted into brass from a mixture
consisting of zinc powder_ fireclay powder_ ferrosilicon_ and
ammonium chloride by diffusion at a temperature of 1350 to 1380 F.
Tests in an Amsler friction machine for the anti-friction properties
of the deposit thus obtained have shown that the brass deposit be-
haves like ordinary brass. With lubrication_ a coefficient of 0. 08
was measured.

Gold. Gold is sometimes applied to titanium alloys prior to

a brazing operation. Harding (Ref. 8) tried the following procedure

based on the hydrochloric acid process for plating gold on titanium.

Panels of both commercially pure titanium and the Ti-3AI-IICr-

13V alloy were prepared. After cleaning_ they were immersed in

hot {Z00 F minimum) concentrated hydrochloric acid for 5 minutes_

rinsed_ and immersed in the gold bath with the current on. Both a

conventional cyanide gold bath and a citric acid gold bath were used.

The deposits were uniform and smooth but they had little adhesion to

the base metal and could be peeled away.

Adherent gold plates may be produced by preplating with electro-

less nickel. Following heat treatment_ the nickel is lightly scrubbed
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with pumice and water to remove any slight film that may have
formed. It is rinsed and then activated cathodically at 6 volts in a
room temperature, 45-g/i potassium cyanide solution_ rinsed, dipped
for 1 to ? minutes in a 30 per cent by volume solution of hydrochloric

acid, and rinsed. At this point, if the part is to be plated in the

citric acid gold bath_ it is placed directly in the gold bath. If the

conventional cyanide gold bath is used_ the part is first dipped briefly

in a 45-g/I solution of potassium cyanide and then gold plated. In

both gold baths, an initially higher current density is used for a few

seconds and then the current is lowered to the operating value. The

adhesion of the gold plating may be evaluated by heating test pieces

to 350 F for i/2 hour and examining for blisters.

Platinum. Certain of the platinum-clad titanium anodes that

have been available commercially for the past few years are produced

by platinum plating following the hydrochloric acid etch. In one study,

completely adherent platinum deposits were obtained on commercially

pure titanium but no adhesion was obtained on Ti-3AI-IICr-13V alloy

(Ref.

A coating of platinum will permit titanium to be used as an auxil-

iary anode in a variety of plating processes.

Zinc. One method (Refs. 31,39) that has been recommended

as a good preplate treatment prior to deposition of a variety of metals

consists of a zinc strike in an essentially nonaqueous solution of

Z00-ml hydrofluoric acid (40 per cent)_ 100-g zinc fluoride• and

800-ml ethylene glycol. Prior to the zinc strike, the titanium must

be cleaned thoroughly and the oxides destroyed. The plating time is

5 to i0 minutes at 68 to 77 F• with a current density of I0 amp/sq ft

and 6 volts; the anodes are of graphite. Copper, brass• tin• cad-

mium, nickel, and chromium can be plated from standard solutions

on titanium with this zinc underplate.

Another zinc-strike bath containing zinc chloride instead of zinc

fluoride was reported as successful (Ref. Z0). However_ copper

deposits in excess of 5 mils in thickness applied over the zinc strike

were reported as unsatisfactory.

Some Soviet workers have examined a complex system of under-

plates (Ref. 31)such as consecutive deposits of zinc, nickel, and

copper. Following copper deposits• any metal may be plated.
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For activating and plating polished titanium, they recommend the

following procedure :

(I) Degrease with solvent, wipe with Vienna lime, and rinse

in running cold water.

(z) Activate for 40 to 60 seconds in a solution containing 185

to Z00-g hydrofluoric acid (40 per cent), 8 to 10-g nitric

acid (sp gr 1.41), and 1 liter of water; temperature 64

to 77 F.

(3) Rinse in running cold water.

(4) Rinse in ethylene glycol for Z to 3 minutes without subse-

quent water rinse. This operation is necessary to pre-

vent dilution of the zinc electrolyte with water (drying

can be used instead).

(5) Zinc plate in the following bath: Z00-g hydrofluoric acid

(40 per cent), 100-g metallic zinc, and 800-ml ethylene

glycol. Zinc powder or filings can be dissolved easily

in hydrofluoric acid. The temperature of the zinc bath is

64 to 77 F. Zinc plating can be conducted chemically or

electrochemically. Chemical deposition, without the use

of current, requires 1.5 to Z minutes. Electrodeposition

of zinc is conducted at a cathode current density of 0.5

to 1 amp/sq dm for 1.5 to 3 minutes. Zinc anodes are used.

(6) Rinse in cold water.

(7) Nickel plate in a standard sulfate bath at 64 to 77 F and

initial current density of 1 to Z amp/sq dm subsequently

reducing the current after 1 to 2 minutes to 0.5 to 1

amp/sq din. The plating time is 1 to I. 5 hours. Solution

agitation is desirable.

(8) Rinse in cold running water, dry in hot air, heat treat

in a drying oven for a muffle furnace at 480 to 570 F

for 40 to 60 minutes.

After heat treating, nickel-plated titanium is activated in con-

centrated hydrochloric acid and is plated with copper or other metals,

or is polished. After polishing, the deposit (nickel or copper) may

be plated with nickel, chromium, rhodium, gold, silver, etc., de-

pending on the service applications. -
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ANODIC COATINGS

Titanium is very resistant to many corrosive media because of

the presence of an extremely adherent and inert surface oxide film.

This chemically stable oxide film forms almost immediately when

titanium is exposed to air; in solution, even a trace of oxygen is

usually enough to maintain the protective layer. It is resistant to

neutral salt solutions and oxidizing acids, and is moderately resistant

to alkalis. However, the oxide is not resistant to hot, strong alkalis

nor to hydrochloric, sulfuric, or phosphoric acids of moderate

strength at ambient temperatures.

Titanium can be anodized in nearly any electrolyte. The char-

acteristics of the film formed in each solution are quite different.

Some give hard, thin crystalline coats; others are soft and thick. As

titanium is anodized it first forms a series of thin, highly colored

films. As the thickness of the coating is increased, it tends to be-

come a uniform grey or brown. Numerous anodizing solutions have

been used by several investigators to achieve the desired character-

istics of anodized coatings on titanium. Several of these procedures

are described in the following paragraphs.

Much use is being made of titanium as a construction material in

the metal-finishing business. Under anodic conditions, the protec-

tive film can be maintained in environments that would otherwise lead

to corrosion. For example, a positive potential of 500 mv will limit

the corrosion rate in 40 per cent sulfuric acid at 140 F to less than

5 mils per year. The anodically reinforced oxide film insulates elec-

trically and severely limits the current passing to the electrolyte.

However, the film does pass current to metal pressed against it,

thus enabling titanium to be used for anodizing jigs or for the con-

struction of anode baskets used in nickel plating.

Anodic films may be produced on titanium for other than cor-

rosion protection. For example, anodizing is one means of con-

trolling, within limits, the thermal-radiation properties of metals

used in spacecraft. Another use is for decorative finishing or fin-

ishes for "cosmetic" purposes; that is, to prevent fingerprinting and

soiling of titanium surfaces. Conventional titanium mill-surface

finishes, as with other metals, are quite easily soiled with finger-

prints and dirt, and soon present a dirty, grimy appearance which is

not easily cleaned. From an aesthetic viewpoint this is not a desir-

able feature for many titanium parts. Anodized films offer a fair

degree of protection against staining and discoloration of the surface

Z1



in addition to a wide range of pleasing colors. The colored films are

very thin and are characterized by the voltage at which they are

formed.

Covington and Early (Ref. 42) recently reported on anodizing

methods for protecting titanium against hot-salt stress corrosion.

Their procedure is as follows:

(i) Equipment

(a) Avariable d-c power supply 0 to I00 volts of sufficient

capacity to provide a current density to 50 amp/sq ft.

(b) A container to hold the electrolyte of sufficient volume

to accommodate piece to be anodized.

(2) Pretreatment

(a) In order to assure a standard surface for all coatings_

the following pretreatment is recommended:

(I) Pickle 30 seconds in 35 per cent HNO3-3 per

cent HF solution.

(2) Wash thoroughly in distilled water.

(3) Agitate in methyl alcohol.

(4) Remove alcohol immediately with warm-air

blast.

(5) Anodize immediately.

(3) Electrolyte

The following electrolyte and anodizing conditions have been

found to produce a coating showing a promising degree of corrosion

protection.

Ele ctr olyte

Concentration

Temperature

Current Density

Time

NaNH4HPO 4
Saturated

32 to 80 F

30 amp/sq ft

30 rain

The film developed on titanium has a high electrical resistance

and the resistance increases with film thickness so that it is neces-

sary to gradpally increase the voltage to maintain a constant current.

At the start of anodization_ about 2 volts will give the required
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current density. Anodization was considered complete when the film

appeared thick. In order to assure reproducible film thicknesses,

the anodization is halted after a definite time interval.

The final voltage obtained varies from 60 to 90 volts depending

on the electrolyte temperature and the alloy being anodized.

It is important that the anodizing bath temperature be held to

less than 80 F. At higher temperatures the coating produced is

porous and not protective. An impervious coating is only formed at

low temperatures.

Janssen, Luck, and Torborg (Ref. 43) reported another pro,

cedure for anodizing on two specific alloys, Ti-5AI-Z. 5Sn and

Ti- 13V- 11 Cr- 3AI.

Prior to anodizing, sheet specimens were mechanically polished

to establish uniform and reproducible surfaces. Finish polishing

was accomplished with a canvas lap and oil-mixed lapping compounds.

The specimens were poli§hed to have the same appearance as alumi-

num and magnesium with surface smoothness of 2 microns in root

mean square.

Before electrolytic treatment, all samples were degreased in

trichloroethylene, cleaned in an alkaline cleaner (Oakite 61A, 45 g/l,

at ZOO F, for 5 min) and rinsed in cold water. Those titanium sam-

ples that were not to be electropolished were pickled in a solution of

40 per cent by volume nitric acid after alkaline cleaning. Samples

were electropolished in a solution of 160-ml/l 50 per cent hydro-

fluoric acid and 500-g/l chromic acid at 64 F and 325 amp/sq ft for

I0 minutes. The samples were rinsed in cold water and anodized by

one of the followin_ processes.

Sulfuric acid anodizing was performed in a 20 per cent by weight

solution at 68 F and 18-volt direct current for Z0 minutes with lead

cathodes. Sodium hydroxide anodizing was performed in a 5 per cent

by weight solution at Z05 F and 50 amp/sq ft for Z0 minutes with mild-

steel cathodes. The coating thickness was varied by varying the

anodizing time. After anodizing, the specimens were rinsed in cold

water and sealed in boiling water for 15 minutes. The Ti-SAI-Z. 5Sn

specimens were anodized satisfactorily by this method, while the

Ti-13V- 11Cr-3A1 alloy coatings were unsatisfactory.

Thickness of the anodized coating was measured by sectioning

the coupons and examining the cross sections on a metallograph.
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The coating thicknesses thus determined are presented in Table VIII.

TABLE VIII. ANODIZING VARIABLES AND COATING THICKNESSES

Thickness, mil

Solution Electropolished Sealed Ti-5AI-2.5Sn Ti-3AI-IICr-13V

Phosphoric acid Yes Yes -- 0.075

Phosphoric acid No Yes -- 0.043

Sodium hydroxide Yes Yes 0. 016 --

Sulfuric acid Yes Yes 0. 016 --

None Yes No ....

A zinc-strike solution (Ref. 39) also has been used for anodizing

titanium. The anodized surface thus produced was a good base for

adherent electrodeposits. The anodizing is conducted for i0 to Z0

minutes at a current density of 50 amp/sq ft and 18 volts, at 68 to

77 F. After anodizing, the parts are plated. Adherent brass, cad-

mium, copper, chromium, nickel, silver, and tin deposits were

reported.

In another procedure, parts are anodized in a 2.0 per cent solu-

tion of sulfuric acid (sp gr I. 84) at 68 F and 18 volts. The color of

the oxide film changes from yellow to purple depending on the length

of treatment. The purple color appears after I0 minutes of

treatment.

At Watervliet Arsenal (Ref. 44), an anodic coating has been

developed that will provide the protection required, simply, in-

expensively, arld with no reduction in physical properties. This

coating, called titanium hard coat, is a tenacious conversion coating

of complex nature that cannot yet be identified. A patent has been

applied for to cover the process for producing the hard coat.

The coating itself exhibits excellent wear and corrosion re-

sistance. Hardness readings, though difficult to obtain, reach as

high as 500 Brinell. In addition to maintaining the mechanical prop-

erties of untreated titanium, the fatigue life of coated titanium is

increased from 108,500 revolutions to 3,765,000 as tested on a

Rotating-Beam Fatigue Tester (Ref. 45). These results are shown

in Table IX. Wear tests on unlubricated specimens, using a Modified

MacMillan Wear Tester (Table X), show an increase of wear life

(at a 40,000-pound load) from ZI6 revolutions for an uncoated speci-

men to 43, ZOO for a coated specimen. Additional tests on hard-

coated specimens covered with a dry-film lubricant exhibit a wear

life of more than 500,000 revolutions.
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TABLE IX. RESULTS OF ROTATING-BEAM FATIGUE TEST

Condition of Calculated

Specimen Stress, psi Cycles to Failure

Uncoated 99,000 38,000

Uncoated 61,500 I, 075,000 (no failure)

Uncoated 84, 000 108,500

Uncoated 84,000 66,000

Hard coated (2 min) 84,000 127,000

Hard coated (3 min) 84,,000 3,765,000 (no failure)

Hard coated (4 rain) 84,000 I, 266,000

Hard coated (5 rain) 84,000 89,000

TABLE X. TITANIUM HARD-COAT WEAR TEST

In Modified MacMillan Wear Tester

Load: 40,000 psi "

Surface Finish Revolutions

Timken Race Bearing Block to Failure

Lubricated hard coat (a)

Lubricated hard coat

Lubricated hard coat

Lubricated hard coat

Unlubricated hard coat

Lubricate,d hard coat
Diffused electroless nickel(c)

Diffused electroless nickel

Bare steel

Diffused electroless nickel (oxide removed)

Unlubricated hard coat

Unlubricated hard coat

Electroless nickel (no diffusion)

Untreated titanium

Untreated titanium

LubriCated hard coat(a)

Lubricated hard coat

Lubricated hard coat

Bare steel

Unlubricated hard coat

Bare titanium

Diffused electroless nickel(c)

Bare steel

Bare steel

Diffused electroless nickel (oxide removed)

Bare steel

Bare titanium

Electroless nickel (no diffusion)

Untreated titanium

Untreated steel

500,000 (b)

174,684(b)

104,039 (b)

51,471

43,200

37,726

31, 104(d)

25,560 (d)

9,792(d)

9,360 (d)

1,588

593

36O

216

216

(a) Lubricant: inorganic solids in a thermosetting resin,

(b) No failure occurred.

(c) Diffused in vacuum at 1550 F.

(d) Watertown Arsenal data.
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The data in Table XI show that the coating process does not

cause drastic hydrogen embrittlement and produces no change in

tensile properties.

TABLE XI. RESULTS OF TENSILE TESTS

Uncoated

Samples Hard -Coated

(Average Samples (Average

of Three Tests) of Six Tests)

Ultimate Strength, psi

Yield Strength, psi

Elongation, per cent

Reduction in Area, per cent

140,300 140, i00

127,700 127,700

17 17

5O 50

It is claimed that the equipment for hard coating is simple_ in-

expensive, and rapid. The solution used is controlled at near room

temperature; inexpensive chemicals are used for the makeup and the

power requirements are comparatively low. Solution control and

operation of the equipment are comparatively easy and can be done

by semiskilled personnel.

ELECTROCHEMICAL AND CHEMICAL POLISHING

An electrochemical method for producing a jewelry finish on

titanium is as follows (Ref. 7). Prepare a solution of 90 per cent

ethyl or No. 30 denatured alcohol and i0 per cent n-butyl alcohol,

for each I00 cc of alcohol_ sequentially dissolve 6-g anhydrous

AICI 3 (exothermic solution - add slowly) and Z8-g anhydrous ZnCl Z.

This solution is stable for about 1 week. Electropolishing conditions

are: 30 to 60-volt direct current, 1 to 5 amp/sq in. of anode (the

specimen) with a stainless steel (or other suitable) cathode, 1 to 6

minutes_ 73 to 86 F, and solution agitated.

Any convenient means for specimen holding and electrical con-

tact can be employed. Small specimens may be mounted in Bakelite

to facilitate handling, sample coding, and storing. In this case, a

1/16-inch-diameter hole is drilled through the Bakelite to the speci-

men and a copper wire is force fit into the hole and into close contact

with the specimen. This serves to make electrical contact and to

hold the specimen in the solution. Because of its nonexplosive

Z6



character relative to perchloric acid solutions, organic materials

like Bakelite can be safely placed in the bath. More elaborate

equipment can, of course, also be used.

A considerable number of electrolytic polishing baths have been

evaluated {Ref. 7) for titanium. The alcoholic chloride solution is

the best found to date for a wide variety of titanium-base materials.

Chemical polishing of titanium can also be performed in an aqueous

solution of the following composition:

Ammonium bifluoride

Nitric acid

Hydrofluosilisic acid

Titanium {to stabilize

reaction rate )

Water

NH4FHF

70% HNO 3

31% HzSiF 6

i00 g/l
400 ml/l

ZOO ml/l

0.5 g/l

Balance

The rate of chemical dissolution and the degree of polishing are re-

lated to the solution temperature, the titanium alloy, and the condi-

tion of the initial surface. Dissolution rates of about 0. I rail/rain

occur in solutions of 80 to 90 F for Ti-6AI-4V alloy that has been

surface ground.

METALLIC COATINGS OTHER THAN ELECTRODEPOSITS

Metallic coatings may be applied to titanium by several methods

other than electrodeposition. The most versatile of these is the

metal-spraying method also called flame spraying or metallizing.

Hot-dipping methods such as the patented Aldip and Mollerizing pro-

cesses are used for coating with aluminum. Both aluminum and gold

are applied to titanium as metal pigments suspended in a vehicle that

is subsequently removed by drying and baking.

Two methods which cannot be recommended for applyingmetal

coatings to titanium are vacuum deposition of metal vapor and metal

deposition by decomposition of volatile compounds. Very limited

experiments with vacuum deposition have produced layers 0.04 mil

thick. The vapor decomposition method has been used to coat tita-

niurn with molybdenum. However,'the high temperature {above the

transition temperatures of titanium alloys) necessary to produce

good bonding will cause detrimental changes in the titanium struc-

ture. Another disadvantage is the high cost of the coating equipment

and the highly skilled labor required.
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FLAME-SPRAY METHOD

Hard-facing materials may be applied to titanium by flame-

spraying methods. For details on equipment_ methods_ ventilation_

safety measures_ etc. _ related to metal spraying or thermospray

processes_ see the Metco Metallizin_ Handbook (Ref. 4). The metal-

spraying process is also described in considerable detail in the ASM

Metals Handbook (Ref. 3). Many of the points presented in these

handbooks are summarized in the following discussion. Four types

of flame spraying are the rod_ detonation-gun_ powder_ and plasma

methods. The methods are summarized in Table XII which was pre-

sented by Westerholm (Ref. 46). Although the rod method he de-

scribed in detail was Used to apply ceramic coatings_ it also has been

used to apply metallic coatings to titanium.

Development of the patented Rokide process (rod method) of

flame spraying was based on the theory that when the coating mate-

rial is in rod form_ the particles have to become fully molten before

they are released. The process uses compressed air to atomize the

molten oxides and to project them to the work surface. The high

velocity imparted to the oxides imbeds_ flattens_ and assures me-

chanical adherence of the particles on the prepared surface. The

compressed air also helps cool the work parts_ keeping them below

350 F.

According to McGeary (Ref. 46)_ flame plating (detonation or

D-gun method) is a patented process used to upgrade standard mate-

rials including titanium and titanium alloys with coatings of tough_

wear-resistant compounds - both metallic and nonmetallic. In the

process_ measured quantities of fuel and particles of coating mate-

rial are detonated in a specially constructed gun_ somewhat re-

sembling a machine gun_ see Table XII. The molten particles are

blasted from the gun and imbedded into the surface of the workpiece

where a microscopic welding action produces a tenacious bond at the

interface. Successive detonations build up the coating material to

the required thickness. Because of the noise of the process_ the gun

is isolated by double concrete walls insulated with sound-absorbing

materials. Aiming and firing is remotely controlled from a panel

outside the firing chamber.

Coatings can be applied as needed on selected areas of the base

material. Warpage_ distortion_ or other physical change in pre-

cision parts is minimized because of the low temperature maintained

in the base material during plating. Although temperatures above
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6000 F are reached within the gun_ the part temperature is main-
tained below 400 F.

Huff {Ref. 461 reports that the Aircospray {powder spray) pro-
cess was developed expressly for hard-facing and brazing operations
in which molten or heated powder metals are sprayed on a base metal
through an oxyacetylene flame. This method uses a standard oxy-
acetylene welding outfit with a modified tip which permits the powder
metal to be sprayed through the flame_ see Table XII. A carrier
gas - argon_ helium_ nitrogen_ or carbon dioxide - conveys the
powdered metals to the torch tip. The fuel gas can be acetylene or
hydrogen.

The primary Use of the process is to deposit and simultaneously
fuse powder metals on a base metal. In other cases_ an incom-
pletely bonded coating can be fused to an underlying metal Surface in
a subsequent heating operation. The powder-spray method can be
used also for brazing. This discussion concentrates on the first two
functions only.

Plasma plating is described by Wolff {Ref. 46) as a patented
companion process to flame plating. It is used to upgrade standatrd
materials with coatings of exotic metals_ refractory compounds_ and
other substances. In this process_ no combustion takes place; the
flame consists of a jet of highly ionized_ heated gas {plasma)_ pro-
duced by an electric arc_ Table XII.

Two basic types of the plasma-jet device are currently used. In
one_ the arc leaves the nozzle of the torch and is transferred along
with the gas stream to the workpiece. This is the basis for metal
cutting. In the second type_ the arc is forced into and through the
nozzle by the gas flow_ but it ends on the nozzle while the gas con-
tinues to flow to the work. This is the nontransferred arc device -
the basis for the plasma-plating process.

Flame-Sprayed Molybdenum. Flame-sprayed molybdenum

deposits are used extensively to provide wear- and seizure-resistant

surfaces on a wide range of metals. Aparticularly attractive feature

of the process is that thick_ adherent deposits can be built up without

any distortion of the base metal. Basically_ the process (Ref. 47)

consists of continuously feeding a pure molybdenum wire through the

oxyacetylene flame of a wire-spraying gun. The molten droplets of

molybdenum that are formed are sprayed onto the work surface until

the required thicknesshas been built up. By masking-off techniques
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TABLE XII. SUMMARY OF FOUR FLAME-SPRAY METHODS (REF. 46)

Equipment

Geram_ rod _ Air.cap .

O_acet/,_,_ mixtura ¢,¢¢k_pieom_

Rod Method
(Rokicle), Norton Co.

Work pieceT_ _

_(x_en_ OxyI:J'a go s _Bo,rel" _

Acet_lene
gos

Detonation-Gun Method
(Flame-Plating), Uncle Co.

Metol powder 0rid c0rrier gos

_Oxygen-ocetylene mixture

w_k_.0.__

Powder Method
(Aircospray), Air Reduction 5ales Co.

• Tungsten cathode

/ /.Anode

,: "-'.'__ I _"Arc column
I .

Gos_

Plasma flame

Water-cooled cooper jacket

Plasma Method
(Pla_a-Plcdlng), Unde Co.

Proom

A solid, _ to _ in. diana
(_eramie rod (the coating ma-

teriel) is supported and cc_tered

in the special nozzle by three

spring-loaded bell_ The rod is

mechanically fed into the oxy-
acetylene flame at a controlled
rate. Molten oxide particles
from the rod are accelerated and

propelled toward the workpieee
at about 550 fps by compressed

air (80 psi supply pressure).

Coating Material

Any ceramic or re-
fractory material that
melts (rather than sub-

limes) and forms drop-
lets (rather t h a n
threads). Most work,
however, has been
done with aluminum

oxide, zirconium oxide,
zirconium s i I i e a t e,

chrome oxide, and

magnesium aluminete_

Controlled quantities of oxygen, Formulations of tungs-
acetylane, and suspended par- ten carbide with cobalt,
tides of coating matecial are ad-
mired into the gun chamber, nickel, or chromium-

carbide additives,

Detonation of the mixture by a chromium carbide with

spark heats the particles to a a nickel-chromium ed-

plastic condition and propels ditive, and aluminum

them at a supersonic velocity oxide.
toward the workpiece.

Powdered coating material, pro-
pelled by gravity and a carrier

gas, is sprayed through the flame
of a modified welding-type noz-
zle onto the workpieee. Fusion is

accomplished by the torch flame
which contacts the work. This

process is also used for capillary

brazing of joints.

Chromium-nickel and

tungsten-carbide com-
positions with boron
added.

A high-current electric are is

concentrated and stabilized in the

controlled atmosphere of a spe-
elal nozzle. Some of the gas

(usually argon) flows through
the arc where it is heated as

high as 30,000 F and aceele-
rated to supersonic speed. The

gas forms a highly ionized plas-
ma jet. Particles of coating ma-

terial, in powder or wire form,

are introduced into the pl_na
where they am melted, then ac-

celerated to a high velocity

toward the workpie_. The

work is cooled by jets of CO,
or air.

Tungsten, tantalum,
molybdenum, alumi-

num oxide, and zirco-
nium oxide.
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the coating can be confined to selected areas. In the "as-sprayed"

condition, the deposit has a rough surface and variable thickness.

It is, therefore, normal procedure to deposit an oversize coating

thickness that can be ground to final dimensions and surface finish.

Work reported by Mitchell and Brotherton (Ref. 47) has shown

that satisfactory molybdenum deposits can be obtained on all titanium

alloys by applying the spraying conditions recommended for other

metals (Ref. 4). Coatings up to Z0 mils thick can be produced with

excellent adhesion; thicker deposits, however, tend to chip at corners

and edges because of inherent brittleness.

During the spraying operation the titanium base metal does not

normally exceed a temperature of 480 F; consequently, there is no

distortion and static mechanical properties are not affected. Fatigue

strength, however, is reduced and recent tests_have shown that a

10-rail molybdenum deposit on Ti-5AI-Z. 5Sn alloy decreases the en-

durance limit by 30 per cent.

The coating consi'sts of a mixture of molybdenum and molybde-

num oxide with a hardness of 500 to 600 VHN. The hardness can be

increased to 800 VHN by using an oxidizing oxyacetylene flame,

owing to the presence of an increased proportion of oxide. Unfor-

tunately, this procedure also increases the brittleness of the deposit

and reduces adhesion; an oxidizing flame should therefore be avoided.

Sprayed molybdenum is most easily applied to the external sur-

faces of components of relatively simple shape which can be easily

ground after spraying; small internal diameters cannot be sprayed

owing to problems of accessibility. The coating provides excellent

wear resistant and friction properties under conditions of sliding

contact and also, where lubrication is limited, since the high porosity

of the layer assists retention of lubricant. Sprayed molybdenum,

however, is unsuitable for resisting severe abrasion and high-shock

loads.

This process has recently been adopted for use on titanium

alternator shafts and proved, in fact, to be the only technique suit-

able for this application. Each shaft is sprayed with a thickness of

20 mils in two bearing locations. The layer is then ground to i0

mils to obtain a uniform coating thickness and the required surface

finish. Overspraying is prevented by masking with adhesive tape or

metal foil.
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HOT-DIPPED ALUMINUM

\

Aluminum coatings may be applied to titanium by two hot-dipping

processes. Hot-dipped coatings do not appear to be detrimental to

the bend or tensile ductility of unalloyed titanium at temperatures up

through 600 F. Limited tests indicate that after exposures of about

3 hours at 1I00 F_ sufficient diffusion of the aluminum into the tita-

nium occurs to cause a significant decrease in the tensile and bend

ductility of thin aluminum-coated sections.

Aluminum coatings improve the short-time oxidation resistance

of titanium and titanium alloys at temperatures up to 1800 F and are

being used extensively by one airframe manufacturer for this pur-

pose. After exposure in air at high temperatures_ a thin alloy layer

is retained on the surface of aluminum-coated materials. While re-

ports on the effects of the residual layer on the base-metal proper-

ties are not consistent_ the available information indicates that the

residue is detrimental to the ductility of thin-sheet materials_ if it

is not removed.

The patented Aldip process for coating titanium is similar to

the process bearing the same name (Aldip) developed by the General

Motbrs Corporation for the hot-dip aiuminum coating of steel. In the

process (Ref. 48)_ titanium articles of the proper cleanliness are

first heated in a fused-salt bath at approximately 1325 F to provide a

suitable surface for aluminum coating. Suitable compositions for the

salt bath are given as 37 to 57 per cent KCI_ 25 to 45 per cent NaCI_

8 to 20 per cent cryolite_ and 0.5 to 12 per cent aluminum fluoride.

The article is then transferred to an aluminum bath_ which is cov-

ered by a layer of the same type of salts_ and held until it reaches a

temperature at least equal to the melting point of aluminum (1220 F).

The article is then withdrawn and shaken to free it from excessive

aluminum.

Alternatively_ the process can be carried out in a single step by

using a dual bath in which a thick layer of salt is floated on the alum-

inum. Limited tests indicate no hydrogen pickup occurs during

ildipping.

This process produces a coating which is metallurgically bonded

to the base material. The results of work at Allison (Ref. 49) indi-

cate that an alloy layer not exceeding 0.5 to 0.9 rail is produced be-

tween the base metal and the aluminum coating. While no information

on the actual overall coating thickness is available_ it is estimated
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that Aldip coatings could be prepared in thicknesses of about 1 to
Z0 mils. The process has been used successfully to aluminum coat
unalloyed titanium, Ti-5AI-Z.5Sn, Ti-ZFe-ZCr-ZMo, Ti-4AI-4Mn,
and Ti- 6AI-4V.

The Mollerizing process was developed and is licensed by the
American Mollerizing Company of Beverly Hills, California. In
the process (Ref. 50)_ 99 per cent pure aluminum or a 98AI-ZSi alloy
is floated on a salt bath consisting of about 80 per cent BaCIz_ Z0
per cent NaCl_ and less than Z per cent Na3AIF 6. The workpiece and
the molten aluminum are electrically anodic_ while the salt bath is
cathodic.

Prior to coating, the article is cleaned by washing in CC14,
pickled in HCf, and then scrubbed and rinsed in boiling water. The
piece is then dipped into the salt bath_ held for the desired time,
withdrawn, air cooled, and scrubbed in water to remove traces of
the salt. The bath temperature is maintained at 1400 to 1500 F.
Under these conditions, commercially pure unalloyed titanium sheets
of 0. 016 and 0. 063-inch thickness were covered with a 0. l-rail-thick
coating after holding times of Z and 4 minutes, respectively (Ref. 51).

As with the Aldip process, Mollerizing produces a coating which
is metallurgically bonded with the base metal. Available data
(Ref. 5Z) indicate that an alloy layer from 0.06 to 0. Z rail thick is
formed at the interface between the titanium and the aluminum coat-
ing on Mollerized material. Limited data indicate thatsome diffi-
culty has been experienced in obtaining uniformly thick aluminum
coatings on heavier gage sheet materials. Thus, one Mollerized un-
alloyed titanium sheet of 0. 016-inch thickness had a uniform alumi-
num coating of 1 mil (Ref. 5Z). However, the coating thickness on
two" separate samples of 0. 050-inch-thick titanium ranged from 0.5
to Z rail in one instance (Ref. 5Z)_ and from 1 to Z0 mils in another
(Ref. 50).

Both unalloyed titanium and the Ti-8Mn alloy have been success-

fully aluminum coated by the Mollerizing process.

BAKED METALLIC PAINTS

A number of paints with metallic pigments which are applicable

to titanium are treated briefly in a later section of this report con-

cerning control of thermal radiative properties. Of particular inter-

est are the aluminum- and the gold-pigment paints.
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Aluminum. Both the Boeing Airplane Company (Ref. 53)

and the Solar Aircraft Company (Ref. 54) have developed similar pro-

cesses for applying aluminum paints to titanium. In the general pro-

cess, aluminum pigment is mixed with a flux and sprayed on the

titanium part. The flux is subsequently baked off. The coating can

be built up into layers of several mils thickness, but for better ad-

herence, it is usually applied as a thin layer.

Generally,'the spray-painted aluminum coatings are more por-

ous and less adherent than hot-dipped coatings. Boeing has reported

(Refs. 53, 54), for example, that some spalling of the painted alumi-

num coatings on Ti-6AI-4V sheets occurs during heating of these

materials. Also, some peeling occurs at points of contact with the

furnace rolls. However, as heat-treatment temperatures are low-

ered from 1700 F, the bond between the coating and base metal is

improved and better protection is afforded.

Both the Boeing and the Solaramic processes have been used to

coat a variety of sheet materials including unalloyed titanium,

Ti-5AI-Z.5Sn, Ti-6AI-4V, Ti-8Mn, and Ti-ZFe-ZCr-ZMo.

Gold. An interesting application of gold-coated titanium

appears in the fabrication of the RA5C (earlier known as A3J) re-

connaissance airplane. This is the gold-coated titanium sheet used

around the J-79 engines which power the Vigilante.

The gold-plating process (Ref. 55) was developed by North

American Aviation's Columbus division and involves spraying a

gold-coating liquid (described below)_ long used in the ceramic in-

dustry, on chemically clean titanium sheet, followed by a suitable

baking treatment. The coating thickness is about 0. 1 rail. The pur-

pose of the coating is to reduce the temperature of the titanium part

during service. Without the gold coating to reflect the heat, tem-

peratures would rise and either a heavier titanium or steel structure

would be required.

Typical gold solutions are described in Du Pont Electrochemical

Department Bulletin CP 4-361. A liquid bright-gold solution applied

by spraying is fired at 950 to II00 F. Fast firing can be tolerated if

the coating is predried at Z50 F to remove volatiles. Gold-paste

metallic suspensions, which may be brushed on_ are also available.

These are fired at I000 to 1400 F for Z0 minutes to 3 hours depending

on the time needed to equalize temperature of the furnace charge.

The firing should always be done at the highest temperature compati-

ble with the base alloy.
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NONME TALLIC COATINGS

HARD COATINGS

Various methods of surface hardening of titanium to improve

wear resistance have been reported. These hard coatings maycon-

sist either of oxides, nitrides, carbides, or borides, or of a titanium

layer containing soluble amounts of one of the interstitial elements.

Oxide. Oxygen dissolves readily in titanium and raises the

transformation temperature thereby tending to stabilize the alpha

phase. Both the solubility and the diffusion coefficient of oxygen in

titanium are relatively high. In this respect, oxygen is considered

to be quite suitable as a diffusion element for the surface hardening

of titanium. However, when titanium is heated in air or in an oxy-

gen atmosphere, a considerable amount of oxide scale is formed.

This scale can roughen the surface, and can lead to serious em-

brittlement problems. The controlled addition of oxygen to titanium

under a reduced pressure of I0 -Z to 10 -3 mm mercury, which re-

duces this undesirable scaling, does not appear commercially

feasible.

Takamura (Ref. 56) has described two methods of surface hard-

ening of titanium by the diffusion of oxygen without causing undesir-

able scaling and embrittlement of the base metal: (I) the diffusion

treatment in argon after preliminary oxidation in dry oxygen, and

(Z) the direct diffusion of oxygen in a molten-glass bath.

Diffusion in an Argon Atmosphere After Preliminary

Oxidation in Dry Oxygen. Oxidation of titanium was carried out in a

fused-silica tube which was designed so that purified oxygen and

argon could be introduced. Titanium parts were completely de-

greased before oxidation. After oxidation in dry oxygen, the thin
oxide scale that formed on the surface of the specimen wasdissolved

into the metal surface by heating at 1560 F in an atmosphere of puri-

fied argon. The degree of the solution of the scale depended upon the
nature and the condition of the formation of the scale. The thin,

uniform scale, which was usually gray and very adherent, was

readily soluble. However, it was difficult to dissolve a heavy scale,

and often spalling of the scale was observed.

When the weight gain in oxidation was less than Z mg/cm Z, ir-

regardless of the time and temperature of oxidation, the scale was
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easy to dissolve. The relationship between the weight gain in oxida-
tion and the time required for complete dissolution of the oxide scale
is shown in Figure i. The amount of oxygen diffused was calculated
from the literature values of the diffusion coefficient and the solubil-
ity of oxygen in s-titanium. Although the calculated time was suffi-
cient for complete dissolution_ it was necessary to increase the time
for diffusion in order to obtain appreciable depth of the hardened
layer.
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FIGURE i. MEASURED OXIDATION RATE OF TITANIUM AND

CALCULATED DIFFUSION RATE OF OXYGEN IN

TITANIUM AT 1560 F (REF. 56)

Figure Z shows the hardness gradient of the specimens_ which

had absorbed various amounts of oxygen_ after diffusion treatment

at 1560 F for 2.4 hours in argon. All specimens had a bright metallic

luster and solution of the scale was complete. The specimens_ oxi-

dized in an oxygen atmosphere at 1560 F for 1 and i. 5 hours_ showed

weight gains of 1.38 and 1.90 mg/cm2_ respectively. Both had sur-

face hardnesses above i000 VHN and it seems probable that in these

specimens the surface had been almost saturated with oxygen at the

diffusion temperature_ see Figure Z. However_ in specimens having

absorbed oxygen to 0.70 and 0. 58 mg/cm2_ the surface oxygen con-

centration after diffusion for 2.4 hours was considerably lower than

the solubility at 1560 F. The minimum amount of oxygen required

for effective hardening after diffusion treatment of 2.4 hours or

longer was estimated to be 1 mg/cm2..
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Diffusion: 1560 F for Z4 hours in argon.

As shown in Figure 3, the depth of the hardened layer increased

with the diffusion time. For instance, the depth of the specimen

treated for Z4 hours was about 8 mils and increased to about IZ mils

after 48 hours. The microstructure of a specimen subjected to argon
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FIGURE 3. EFFECT OF THE DIFFUSION METHOD ON THE

HARDNESS GRADIENTS (REF. 56)

Amount of oxygen absorbed: 1.4 to i. 9 mg/cm Z.

diffusion for 48 hours after having absorbed i. 38 mg/cm Z of oxygen

showed a hardened layer consisting of large s-grains in which oxygen

had dissolved. The hardness gradient of specimens subjected to

argon diffusion treatment for Z4 hours and then to nitrogen for Z4

hours was the same as that of a specimen subjected to argon diffusion

treatment for 48 hours. Nitrogen hardens titanium in much the same

manner as oxygen. However, when the specimen was directly treated
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in nitrogen immediately after preliminary oxidation, it was observed

that the black scale was retained on the surface even after diffusion

for 48 hours and the hardness level was very low compared with that

of the specimen treated in argon. Since the atomic radius of nitrogen

is larger than that of oxygenj it is probable that nitrogen retards the

diffusion of oxygen in the titanium lattice.

Direct Diffusion of Oxygen in a Molten-Glass Bath.

When titanium is heated in a fused-salt bath, it is more or less cor-

roded or oxidized as the result of the chemical reaction. In some

kinds of glass, even at high temperatures the rate of the surface re-

action is so low that the corrosion or the formation of oxide film on

the surface is negligible and the diffusion of oxygen into titanium can

take place to an appreciable extent. Table XIII lists the chemical

compositions of several glasses that have been used as heating

mediums.

TABLE XIII. CHEMICAL COMPOSITIONS OF GLASSES USED TO

FORM OXYGEN-HARDENED SURFACES ON

TITANIUM

Composition, wt per cent
i

Ingredient No. 1 No. 2 No. 8 No. 4

• SiO 2 48 58 49 36.8

Na20 19 24 25 31.5

B20 3 38 16 26 18.9

K20 -- 6 6 6.3
CaO 4.2 ......

BaO ...... 6.3

By controlling their chemical compositions, glasses were ob-

tained with various viscosities at high temperatures. As shown in

Figure 4, the relative viscosities _'_of these glasses decreased from

No. I to No. 4. At 1560 F, No. I and No. Z had almost the same

viscosities.

*The relative viscosity means the reciprocal of the leugth, L, (cm) of the glass flow when a glass

pellet (400 mils in diameter by 520 mils in length) made from pulverized glass that had been

passed through a 500-mesh sieve was placed on a porcelain plate inclined at 30 degrees and heated

at the indicated temperatures.
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About 1 kg of glass was placed in an agalmatolite crucible and

melted in an electric furnace. The titanium specimens to be oxidized

were dipped in the glass bath and heated. Then the specimens were

taken out of the crucible and quenched in water. In order to remove

all of the traces of the glass adhering to the specimens_ the speci-

mens were dipped in a molten alkali bath (NaOH 80_ NaCI i0, NaTCO 3

i0 wt %) at 660 F and a nitric-hydrofluoric acid bath (HNO3 10,

HF Z vol %) at room temperature, 5 minutes for each bath_ and then

rinsed with water.

The hardness gradients of the specimens heated in the glass baths

at 1560 F are shown in Figures 5, 6, and 7. Figures 5 and 6 show

that similar results were obtained in baths No. 1 and No. Z. The

hardness near the surface was about i000 VHN in both cases3 and the

depth of the hardened layer increased progressively with the time_ 8,

IZ, and 14 mils for 24, 48, and 7Z hours, respectively. These val-

ues agreed well with the values obtained with specimens diffused in

argon after preliminary oxidation in oxygen (Figure 3). In addition_

the microstructures were the same as those of specimens with the

argon diffusion treatment.

In baths No. 3 and No. 4, although the depth of the hardened

layer was the same as that in baths No. 1 and No. Z for the same

heating timej the hardness near the surface increased to about
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II00 and IZ00 VHN for baths No. 3 and No. 4, respectively. In these

cases black scale was found adhering to the molten-glass bath.

Moreover, serious embrittlement resulting in surface cracks was

observed when the specimen was polished.

After the specimens were removed from the molten baths No. 1

and No. Z_ their surface appearance remained almost unchanged.

Therefore, it was considered that in the comparatively viscous baths

{No. 1 and No. Z), the supply rate of oxygen was lower or the same

as the rate of diffusion of oxygen into the metal core at the operating

temperature. This is a necessary condition for surface hardening of

titanium by oxygen without serious embrittlement and surface rough-

ening. It was fortunate that, in such cases, the rate of growth of the

hardened layer was almost the same as when an excess amount of

oxygen was supplied. It is also interesting that similar results were

obtained by both baths No. 1 and No. Z in spite of the fact that their

chemical compositions differed considerably.

When the agalmatolite crucible was replaced by a heat-resistant

austenitic stainless steel crucible, the formation of a black oxide

scale and serious embrittlement were observed on the specimen even

in the No. 1 and No. g baths. The glass could be used repeatedly

without loss of activity. From these facts, it is considered that oxy-

gen is supplied to the specimen by a chemical reaction between tita-

nium and glass and the resulting deficiency of oxygen near the speci-

men is recovered by diffusion or convection from the atmosphere.

When a stainless steel crucible was used, the oxide scale formed by

oxidation of the Steel was mixed into the glass and the bath became

yellow. It is probable that in this case the ferric or chromic ion

acts as the oxygen carrier in the molten-glass bath. In conclusion,

Takamura (Ref. 56) states that the viscosity of the glass plays an

important role in carrying oxygen to the specimen.

It may be inferred that both the direct oxidation of titanium fol-

lowed by diffusion treatment in an inert-gas atmosphere and the

combination oxidation-diffusion treatment in a glass bath might show

commercial promise. However, Mitchell and Brotherton (Ref. 47)

consider that the control is too critical and that this renders these

methods generally unsuitable for industrial use. The latter method

would probably be the more simple and practical. An oxygen case

has the advantage over a nitrogen case in that it becomes three times

as deep for the same treatment time.

In an effort to develop a more practical process, Mitchell and

Brotherton (Ref. 47)investigated the possibility of surface-hardening
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titanium by utilizing the inherent oxidation potentials of molten salts.
It %vasconsidered that the most suitable salts would be alkali metal
carbonates and chlorides j since these have suitable melting ranges
and are not decomposed at temperatures of interest.

Titanium specimens were heated in various combinations of these

salts at temperatures between Iii0 and 1650 F. Mixtures of sodium

and potassium chlorides and carbonates produced hard layers but they

also corroded the specimens. In contrast: salt baths consisting pre-

dominantly of lithium carbonate gave excellent results: and hard

layers were formed without corrosion or changes in dimensions.

A typical microstructure obtained when commercially pure tita-

nium was heated for Z hours at 1380 F in a lithium-carbonate salt

mixture showed a white-etching layer with a maximum hardness of

650 VHN and a depth of _I rail.

Although controlled oxidation in lithium-carbonate salts gives

satisfactory layers at all temperatures between iii0 and 1650 F: it

is considered that the most useful temperature is 1470 F_ since

above this level titanium is extremely susceptible to distortion. The

best treatment time is between Z and 4 hours; longer times cause a

thin oxide skin to develop: which tends to flake away from the hard

underlayer.

A recent application of this technique to titanium pistons com"

pletely eliminated a severe galling and seizure problem: and produc-

tion batches of these components are now regularly treated. Its use

is also being considered for titanium shafts and rotors.

In the opinion of Mitchell and Brotherton (Ref. 47)_ the con-

trolled oxidation of titanium alloys in lithium-carbonate-base salt

mixtures is the most attractive interstitial-hardening process avail-

able: since hard: wear-resistant layers can be formed at low tem-

peratures by short treatments using relatively simple equipment.

Minkevich and Shul'ga (Ref. 57) surface hardened titanium in

fused borax. Spectrographic analysis showed the boron content in

the surface zones of the variously treated samples to contain less

than 0. 1 per cent boron and hardening was attributed to oxygen

absorption. The microstructure and hardness did not differ from

titanium oxidized in air. This work was carried out on a forged alloy

of Ti-0.5 W composition in an electrochemical setup.
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They concluded that treatment in fused borax and using an elec-
trochemical method of protection appears to be an effective way of
hardening the surface of titanium. With this treatment_ the surface
hardness (Vickers_ 5-kg load) is increased from Z50/300 to 700/950.
The wear resistance of titanium oxidized in this way is comparable
with that of case-hardened and nitrided steel (tests carried out on dry
samples using the Arnsler machine). The treatment of titanium in
fused borax lowers its mechanical properties (strength and_ particu-

larly_ plasticity and ductility); and this is coupled with a pronounced

grain growth of the titanium on prolonged heating and hardening of

the surface.

The treatment of titanium in fused borax may be carried out at

1650-1700 F over a period of 3 hours and using a current density of

about 0. 1 amp/cm 3 with titanium as the anode. Treatment at higher

temperatures and over longer periods causes a marked increase in

the brittleness of the layer and a deterioration in the mechanical

properties of the titanium.

The bright surface needles formed in this treatment are said by

the authors (Ref. 57) to represent a solid solution of oxygen in tita-

nium. Quenching from the saturation temperature does not change

the acicular character of the microstructure of the diffusion layer.

On treatment of titanium in fused borax at high temperatures

(1830 to 1930 F) and .with a high current density (1.5 to 3.5 amp/

cruZ), a very hard, unetchable layer (3500 microhardness units) is
formed on the surface of the titanium. Such treatment_ howeverj

causes marked breakdown of the surface of the sample.

The hardening of unalloyed titanium or Ti-ZAI-Z. 5Cr alloy may

be carried out at 1470 F over a period of 6 to 9 hours_ in a bath

made up of 60 per cent borax and 40 per cent boron carbide. This

method of hardening_ however_ is suitable only for small parts;

also the surface hardness is only increased by Z00 to Z50 VHN

(5-kg load) and 300 to 500 microhardness units.

All the samples treated in the bath containing boron carbide

(irrespective of temperature and duration of treatment) exhibited a

clean_ even_ slightly gleaming surface which required no additional

grinding and polishing.

Nitride. Titanium has a strong affinity for nitrogen and a

hard nitride layer is formed when it is heated in nitrogen or

ammonia. The diffusion rate of nitrogen in titanium is lower than
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that of oxygen. Nitrogen increases the transformation temperature.
It is claimed that nitriding proceeds at a faster rate in an ammonia
atmosphere than in nitrogen_ but unfortunately the presence of hy-
drogenj formed by the dissociation of ammonia_ introduces the
danger of embrittling the titanium. For this reason_ nitrogen is the

preferred nitriding atmosphere.

Experiments by Mitchell and Brotherton (Ref. 47) showed that

trace amounts of oxygen in the nitriding gas led to undesirable scal-

ing effects and also affected the depth and hardness of the case. To

insure an atmosphere of high purity_ super-pure nitrogen containing

a maximum impurity level of 6 ppm was used. In addition_ all ex-

periments were carried out in a vacuum furnace_ applying a vacuum-

purge technique to remove air from the furnace before the introduc-

tion of the nitrogen.

Nitriding temperatures of 1560 to 1830 Fwere investigated for

treatment times of between 4 and 48 hours_ and a range of nitrogen

flow rates and pressures. Microhardness gradients for the Ti-5AI-

2.5Sn alloy are shown in Figures 8 and 9. From these experiments

it was concluded that the depth and hardness of nitrided layers are

not significantly affected by nitrogen flow rate or pressure_ or by ex-

tending the period of nitriding beyond 16 hours. An increase in tem-

perature_ however_ produced a substantial increase in case depth

and hat dne ss.

Nitrided titanium is of a uniform golden color if the nitriding

atmosphere is completely oxygen free. A slight roughening of the

surface also occurs and increases with temperature and duration of

nitriding. Metallographic examination (Ref. 47) of nitrided titanium

alloys shows that two well-defined layers are formed. The thin

surface layer is probably the compound TiN with a reported hardness

of _1500 VHN; this is extremely brittle and difficult to retain during

preparation. The thicker_ secondary layer is nitrogen-stabilized

alpha solid solution_ with a maximum hardness of _700 VHN. The

thicknesses of the compound and secondary layers formed on the two

alloys by nitriding for 16 hours at temperatures between 1560 and

1830 F are given in Table XIV. The core structures produced were

in accordance with the thermal history and transformation tempera-

ture of the alloy.
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TABLE XIV. THICKNESSES OF NITRIDED TITANIUM LAYERS

Alloy

Titanium AIpha

Nitride Stabilized

Nitriding Compound Secondary,

Temp, Layer, Layer,

F rail mils

Ti-5AI-2.5Sn 1560 0. I 0.8

1650 0.2 i. 2

1740 0.25 i. 5

1880 0.3 2.0

T i -4A 1-4M n 1560 0.2 0.5

1650 0.2 0.9

1740 0.3 i. 2

1830 0.3 i. 7

Nitriding between 1560 and 1830 F has no appreciable effect on

the ultimate strength: yield strength, or impact properties of the

alloys tested. After nitriding above 1650 F, however, the Ti-4AI-

41Vin alloy showed a drastic reduction in elongation (see Figure i0).
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FIGURE 10. ELONGATION PROPERTIES OF TITANIUM ALLOYS

AFTER NITRIDING FOR 16 HOURS AT TEMPERA-

TURES BETWEEN 1560 AND 1830 F (REF. 4:7)

This was attributed to the development of a condition known as

"/B ernbrittlement", caused by heating in the all-;B range. To avoid

ernbrittlement, _/_ alloys must be nitrided (or oxidized) below the

0_--/3 transition temperature, since this condition cannot be rectified

by later heat treatment.
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Attempts to establish the effect of nitriding (Ref. 47) on fatigue

properties were hampered by the severe distortion that occurred on

heating specimens above 1560 F and only the Ti-5AI-Z. 5Sn alloy test

pieces nitrided at 1560 F were considered suitable for testing. The

results_ presented in Table XV, show that nitriding decreases the

endurance limit by ~Z0 per cent in the unnotched condition and by

35 per cent in the notched condition. A possible explanation is the

presence of the brittle surface nitride and the surface roughening

produced by nitriding.

TABLE XV. THE EFFECT OF SURFACE TREATMENTS ON THE FATIGUE PROPERTIES OF

TITANIUM ALLOYS (REF. 47).

Alloy T est-Piece Treatment

Endurance Limit

(2 x 107 Cycles),

tons/sqin.

Ti-SA1-2.5Sn Unnotched Untreated 26.0

Unnotched Nitrided for 16 hr at 1560 F 21.0

Unnotched Cyanided for 2 hr at 1470 F 15.0

Unnotched Molybdenum sprayed (10-mil coating thickness) 18.0

Notched Untreated 15.0

Notched Nitrided for 16 hr at 1560 F 9.6

Ti-4A 1-4Mn Unnotched Untreated 84.2

Unnotched Cyanided for 2 hr at 1470 F 21.0

The wear resistance (Ref. 47) of nitrided titanium alloys sliding

against hardened steel without lubrication is shown in Figure ii.
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FIGURE i I. WEAR RESISTANCE OF TITANIUM ALLOYS AFTER

VARIOUS SURFACE TREATMENTS (REF. 47)

Sliding rate_ i0 ft/min; stressj 30 Ib/in.Z; unlubricated.
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Wear rates for untreated titanium and carburized mild steel_ apply-

ing the same test conditions_ are included for comparison. The

results show that nitrided titanium has a high wear resistance almost

equal to that of carburized mild steel. Since the layers are extremely

shallow_ however_ they would probably collapse under heavy loads.

Nitriding is therefore recommended only for components operating

under medium or lightly loaded conditions.

Although many investigators suggest that nitriding is the most

promising technique available for the surface hardening of titanium_

it has limitations. The temperatures necessary to produce even

shallow layers can distort components_ processing conditions are

critical_ and a precision-built furnace is essential. Nitriding of

titanium parts should be approached with these considerations in

mind.

Gyanide. During the case hardening of ferrous materials in

salts containing molten sodium cyanide_ both nitrogen and carbon are

liberated at the surface of the metal. Provided that similar reactions

occur between cyanide and titanium_ this process would seem to offer

a convenient method of interstitial hardening with nitrogen and car-

bon. Additional hardening might also occur as a result of the pres-

ence of atmospheric oxygen dissolved in the salt.

The application of this process to titanium alloys does not seem

to have received much consideration and the only detailed reference

is by Griest_ et al. {Ref. 58)_ who report that the antigalling proper-

ties of cyanided titanium compare favorably with those resulting from

other surface treatments.

Work by Mitchell and Brotherton {iRef. 47)_ using molten mix-

tures of sodium and potassium cyanides and carbonates_ has estab-

lished that_ although titanium alloys can be hardened by this pro-

cess_ there is a serious limitation in that all titanium alloys are

dissolved by salts containing molten cyanide. The active constituent

causing dissolution is sodium cyanate which is progressively formed

in cyanide baths by the oxidation of cyanide_ as shown in Figure IZ.

The rate of dissolution increases with temperature and cyanate con-

centration {Figure 13). Attempts to retard the rate of cyanate for-

mation by maintaining inert and reducing atmospheres over the bath

were unsuccessful. From this work_ it was concluded that a treat-

ment temperature of 1470 F represents the most useful compromise

between the rapid dissolution rates at higher temperatures and the

relatively shallow case depths formed at lower temperatures. It is

48



61 ' /' ' ' ' I
I 1650 F/ /

,1//__--------------_1"_ i i I I /
O0 5 I0 15 20 25

Age of Bath, hours

5O

FIGURE 12. EFFECT OF TEMPERATURE ON CYANATE FORMATION IN A

35 TO 40 PER CENT SODIUM CYANIDE BATH (REF. 47)

I I I I I

FIGURE 13.

1560 F

1470 F

L
2 5 4

Sodium Cyanate, per cent

5 6

EFFECT OF CYANATE CONTENT ON THE SOLUTION RATE OF TITANIUM IN

A 35 TO 40 PER GENT SODIUM CYANIDE BATH AT VARIOUS TEMPERATURES

(REF. 47)

49



emphasized_ however, that even at 1470 F substantial dimensional

losses will occur, especially in cyanide baths that have aged for

longer than a few hours.

The effects of cyanide concentration and treatment time at

1470 F on the depth and hardness of cyanided layers on the Ti-4AI-

4Mn alloy are given in Figure 14(a) and (b). The best layers were

formed by a Z-hour treatment in a mixture containing 35 to 40 per

cent cyanide. The layers produced on all alloys are light-etching

alpha solid solutions_ reported to consist predominantly of a solid

solution of nitrogen in titanium (Ref. 58). The case depths obtained

in this work would_ however_ indicate that oxygen and not nitrogen

is the major interstitial element present.
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FIGURE 14. EFFECT OF CYANIDE CONCENTRATION AND

CYANIDING TIME AT 1470 F ON THE DEPTH

AND HARDNESS OF LAYERS FORMED ON

Ti-4AI-4Mn (REF. 47)

In comparison with gas nitriding_ the distortion problems

associated with cyaniding are not serious_ since lower temperatures

can be used. This treatment_ however_ reduces fatigue properties

more drastically than nitriding_ and decreases the endurance limit

by approximately 40 per cent in the unnotched condition (Table XV).

The wear resistance of cyanided titanium (Figure II) is slightly

higher than that produced by nitriding, but it is probable that heavy

loads would cause the layer to collapse. Data showing the improved

5O



performance of lubricated cyanided surfaces are available. (See the

section on lubricant finishes in the present report. )

In view of the difficulties associated with the dissolution of tita-

nium in molten cyanide salts_ this process is considered inferior to

nitriding_ and cannot be recommended for use at the present stage of

development.

Carbide. No recent work with carbide coatings produced by

carburizing was found. However, in older studies it was shown that

0. Z to 0.8-rail coatings of TiC are produced by carburizing by the

pack method or treatment with carbon monoxide or hydrocarbon

gases at 1750 to 1840 F (Ref. I). The case depth cannot be increased

by heat treatment (Ref. 58) because of the low solubility of carbon in

titanium. Cases of TiC greater than 0. Z rail tend to be brittle and

spall off. Carburizing shows little promise for producing nongalling

surfaces on titanium alloys.

Tungsten carbide with 13 per cent cobalt has been applied to

titanium-alloy turbine-engine parts by the detonation-gun process

(Ref. 59). During the coating process, the workpiece is kept cool so

that the titanium-alloy structure is not damaged. The tungsten-

carbide coating is used in sections of engine compressors where it

offers superior wear resistance. However, its use is limited to

service temperatures below I000 F; above this, the coating oxidizes

severely.

An outstanding example of the use of the detonation-gun-

deposited tungsten carbide is in the coating of the contact surfaces

of a midspan shroud of a fan blade of Ti-6AI-4V alloy where the

coating provides wear resistance to protect the blade from high unit

loads_ both sliding and impact. Such coated shrouds have operated

successfully in c0mmercial-aircraft turbine engines for thousands of

hours with negligible wear (Ref. 59).

Boride. The Soviet workers Minkevich and Shul'ga (Ref. 57)

treated a sample of a Ti-5Gr alloy in vacuum in powdered boron at

1830 to ZI00 F. This resulted in the formation of a diffusion layer

having a thick_ unetchable surface zone of great hardness (Vickers

i000 to l150j microhardness >ZZ00). The change of hardness with

depth is given in Table XVI. The type of lattice and the parameters

of the surface zone of this layer correspond to TiB. Spectrographic

analysis of the surface of the sample showed the presence of IZ to

16 per cent boron in the surface zones of the layer. This amount
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represents the average boron content in the layer into which the
spark penetrates (to a depth of up to 0.8 rail). It may, therefore_
be assumed that in the unetchable surface zone the boron content is
higher. The second phase in the surface might obviously be an
co-phase or TiB (for which more than 18 per cent boron is necessary),

but_ because of the insignificant amount of the second phase, it was

not possible to reveal it by X-ray.

TABLE XVI. CHANGE IN DEPTH AND HARDNESS OF THE BORONIZED LAYER (REF. 57)(a)

Depth of
Treatment Unetchable Zone Vickers

Temperature, of the Layer, Hardness

F mil (5-Kg Load)

Microhardness (100-Gm Load) at Various

Distances From the Surfac% rail
0.4 1. 2. 4. 6.

1830 0.39 904 (b) 1244 887 504 398 366

1920 0.43 1030 1583 964 504 400 343

2100 0.51 1160 2010 1607 512 404 366

(a) Treatment time = 6 hr.

(b) Vickers hardness at center = 350.

In view of the general lack of information on boride surface

treatments for titanium, this treatment cannot be recommended for

use at the present stage of development.

CONVERSION COATINGS

Chemical conversion coatings are used on titanium to improve

lubricity. They act as a base for lubricants, promoting their reten-

tion and alleviating the tendency for severe galling in moving contact.

No recent developments in conversion coatings were found.

However, examples of procedures are given in ASM Metals Handbook

(Ref. 3). In brief, it states that conversion coatings are commonly

applied by immersing the parts in a coating solution, by spraying or

by brushing. Three conversion-coating baths with immersion times

and bath temperatures are given in Table XVII. The resultant coat-

ings are comprised of primarily titanium and potassium fluorides

and phosphates. Cleanliness of the part is critical; finger marks or

grease cannot be tolerated. The pH of the bath must be carefully

controlled, according to the composition of the bath. The coating

thickness depends on immersion time, which typically may be Z to

1 0 minutes.
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TABLE XVII. CONVERSION-COATING BATHS FOR TITANIUM ALLOYS (REF. 60)

Bath Composition, Temperature, Immersion

Bath grams per liter F pH Time, min

50 Na3PO 4" 12 H20

20 KP. 2 H20
11.5 HP solution(a)

50 Na3PO 4" 12 H20
20 KF'2 H20
26 HF solution(a)

40 Na2B407" 10 H20

18 KF-2 H20
16 HF solution (a)

185 5.1 to 5.2 10

80 <1.0 1 to 2

185 6,3 to 6.6 20

(a) 50.3 wt % HP.

Coatings are easily removed without excessive loss of metal by

pickling in an aqueous solution containing 2.0 per cent HNO 3 and

Z per cent HF by weight.

LUBRICANT FINISHES

For a review of lubricants for titanium see the DMIC review

(Ref. i) which deals with both solid and liquid lubricants including

hydrocarbons_ inorganic liquids_ synthetic long chain compounds_

sugar solutions_ and halogenated hydrocarbons. Only a few of these

decrease the coefficient of friction from that for unlubricated

titanium.

Some improvement in wear resistance was obtained from lubri-

cated cyanided surfaces (Ref. 61). Wear-test data illustrating re-

sults are presented in Table XVIII.

A recent detailed discussion of finishes that lubricate_ particu-

larly the properties and applications of bonded-solid-lubricant coat-

ings_ is given in a recent paper by Di Sapio and Goldie (Ref. 6Z).

They state that bonded solid lubricants are increasingly being speci-

fied for all manner of bearing surfaces of machine parts and that they

have been used for some time now in aircraft applications and special

mechanisms where liquid lubricants are unsuitable.

Many finely divided_ inorganic solids are used as lubricants in

one way or another. Classic examples are graphite and molybdenum
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Un TABLE XVIII. WEAR DATA OBTAINED ON A FALEX WEAR TESTER

Pin V-Block

.. Weight Loss on Pin,

Silicate

Mineral Oil Ester Plexol

MIL-O-6082(b) MLO-8200 201(c)

m (a)
Phenyl

Methyl

Silicone

Halogenated

Hydrocarbon

Steel Steel 1.2

Steel Ti-2.8Cr-1.8Fe a. 6

Ti-2.8Cr-1.5Fe Ti-2.8Cr-1.5Fe 403.8

Ti-2.8Cr-1.5Fe Cyanided Ti-2.8Cr-1.5Fe 444.8

Cyanided Ti-2.8Cr-1.5Fe Ti-2.8Cr-1.5Fe 297.2

Cyanided Ti-2.8Cr-1.5Fe Cyanided Ti-2.8Cr-1.5Pe 0.5

Cyanided Ti-2.8Cr-1.5Fe Steel 0.2

Steel Cyanided Ti-2.8Cr-1.5Fe 3.2

Steel Ti-4/tl -4Mn 2.

Ti-4A1-4Mn Ti-4A1-4Mn 286.

Cyanided Ti-4A1-4Mn Cyanided Ti-4A1-4Mn 1.

Cyanided Ti-4A1-4Mn Steel 0.

Steel Cyanided Ti-4A1-4Mn 4.

Steel Ti-3A1-5Cr --

Ti-3A1-SCr Steel 526.4

Ti-3A1-5Cr Ti-3A1-5Cr 330.6

Cyanided Ti-3A1-5Cr Cyanided Ti-3A1-5Cr 216.9

Cyanided Ti-3A1-5Cr Steel 162.3

Steel Cyanided Ti-3A1-5Cr 4.3

4

5

1(d)

2 (d)

6

2.0 1.7

9.4 6.3

362.5 391.6

-- 0.2

0.3 0.1

-- 8.3

203.3 278.4

-- 0.3

0.2 0.2

12.1 6.5

°" 10.1

-- 506.8

0.0 0.1

"- 0.5

0.3 0.4

"" 21.2

Welded

Welded

391.0

0.2

208.6

O. 2(d)

383.7

264.8

58.1 (d)

0.6

2.0

0.2

0.0

0.1

1.7

2.1

0.2

0.3

0.3

1.3

0.9

0.3

0.1

0.2 (d)

0.3

(a) Conditions of tests: load, 250 lb; time, 30 min; room temperature.

(b) Military specification for a lubricating oil, aircraft-engine grade.

(c) Di-2-ethylhexyl sebacate.

(d) One run only.



disulphide, which provide effective lubrication in a wide variety of

applications. Molybdenum disulphide is especially effective at high

bearing pressures. These lubricants are available in powder form,

as greases and grease-consistency concentrates, in liquid disper-

sions, and, more recently, as bonded-solid-lubricant coatings.

These coatings are commonly supplied as a suspension of finely

divided powder in a lacquer or thermosetting resin, thinned with

various solvents. Both are one-part systems, packaged ready for

use. The film is applied to the bearing surface and cured in place

as a thin, but long-lasting, lubricative coating.

Resin binders may be of several types; air-drying lacquers,

air-curing resins, and thermosetting resins are the most common,

although inorganic binders are sometimes used.-- The solvent used

varies with the nature of the binder and, to a lesser degree, with the

application method. Three most common methods of applying a

coating are: spray, dip, and tumble. Brushing and flow coating can

be used, but do not give. uniform results. For the greatest uniform-

ity, thickness control, and endurance, spray coatings are much to be

preferred. Tumbling offers economic advantages when large num-

bers of small, simple parts are processed.

Alloys of titanium may be pretreated either by abrasive blasting

or a commercial phosphate-fluoride conversion coating. Parts must

be thoroughly rinsed in water after the chemical treatment.

No specific examples of the application of bonded-solid-lubricant

finishes on titanium were given by Di Sapio and Goldie. Solid lubri-

cants have some effectiveness at very low loads on bare titanium sur-

faces but no strong bonding takes place. Heavy loads cause break-

through and metal--to-metal contact (Ref. I).

PAINTS

Paints are used on military aircraft both as a functional finish

and for appearance and identification. Dissimilar metals appear on

the surfaces of these aircraft with aluminum and magnesium used in

low-temperature areas and titanium in the high-temperature areas.

The combination of metals necessitates the best corrosion protection

available, particularly since many of the aircraft are used in the

salt-laden atmospheres of carriers and beaches. Elsewhere, runway

deicing salts can be the source of corrosion problems. Since engine

oil for jet engines is an effective stripper of most paints, formulation
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of effective paints presents a challenge. Bentinck and Hohman
(Ref. 63) report that the Navy Bureau of Aeronautics has developed
an acrylic-lacquer system which performs well on most exterior
areas of aircraft. One of the problems in its use has been loss of
adhesion from glass laminates, aluminum, magnesium, and titanium.
Most difficulty has been encountered in its use with magnesium.

The sequence of operations used by manufacturers in painting
aircraft is (I) preclean, (Z) steam clean, (3) treat surface, (4) apply
paint, (5) apply markings, (6) apply stencils, (7) touch up, and
(8) final inspect. Since many of the problems only incidentally in-
volve titanium, the cleaning process and primer and finish coat
formulations are not presented here. See the paper of Bentinck and
Hohman (Ref. 63) for the composition of "Wash primer" MIL-C-
8514(AER) with major ingredients of polyvinyl butral, resin, zinc
chromate, magnesium silicate, n-butyl and ethyl alcohols, and an
acid component of phosphoric acid; the tie coat of cellulose-nitrate
modified alkyd primer, MIL-P-7962, and the finish coat of acrylic-
nitrocellulose resin, MIL-L-19537.

CERAMIC coATINGS

Titanium and its alloys, as well as other metals, often are sub-
jected to heat treatments to improve properties. Since the operation
is carried out at high temperatures, the problems of oxidation and
scale formation on a reactive metal such as titanium are formidable.
They can be circumvented by use of inert-gas atmosphere or vacuum
furnaces, but this often is more complicated and expensive than is
desired. Recently Rolls-Royce, Ltd., developed (Ref. 64) a variety
of coatings that protect titanium during heat treatment. These coat-
ings are available from F. W. Berk & Company, Ltd., of Berk
House, 8 Baker Street, London WI, under the name of Berkatekt,
as described in Metallurgia (Ref. 64).

Berkatekt is supplied in liquid form, and its application to a
clean metallic component results in a thin impervious film on the
surface of the metal, which reduces oxidation and scale formation
with the attendant problems of pickling and machining.

Berkatekt coatings fall into two broad classes: the four grades
of thin-film, non-self-descaling, nonfusing coatings, incorporating
bentonite materials which can be used from iii0 to Zl00 F, and the
three grades of self-descaling coatings which incorporate ceramics
and are used in high-temperature annealing in the range 1560 to
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ZI90 F. Of the four non-self-descaling grades, two have toluene and

two have trichloroethylene as a solvent. In the case of the self-

descaling grades_ the solvent is toluene in each case.

The Berkatekt preparations may be applied by spraying or

dipping_ but whichever technique is used_ the metal surface to be

coated must be free from paint_ dirt_ oxide_ scale_ and grease_ and

should be bright - preferably polished - to obtain the best results.

Dipping probably produces the better coating_ but this method can

only be used for simple shapes_ such as flat plates, and spraying

must be regarded as the universal method of application. Fortu-

nately_ the coatings do not run in the wet state_ so that_ provided the

liquid is well stirred_ it is not difficult to achieve a uniform coating.

In the case of the non-self-descaling grades_ a coating of i to i. 5

microns thick usually gives better results than a thicker film.

The safety precautions to be observed depend on whether the

solvent is the inflammable toluene or the toxic trichloroethylene_

and whether the dipping or spraying technique is used. Adequate fire

precautions are necessary with toluene_ and efficient fume-extraction

facilities with trichloroethylene. There is no fire risk from the dried

coating.

While dealing with the application of this coating_ reference may

be made to its removal in the case of the non-self-descaling grades.

As this thin film is inert and not abrasive (the self-descaling coating

is) there may be no need to remove it. Where its removal is desir-

able_ this can be effected simply by a short pickling operation.

The properties of titanium and zirconium alloys are markedly

affected by their content of gases such as oxygen, nitrogen_ and

hydrogen_ and the barrier provided by this coating against pickup

of such gases_ even at high temperatures, is said to result in little

or no deterioration of mechanical properties.
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SURFACE TREATMENTS AND THEIR RELATION

TO THERMAL RADIATIVE PROPERTIES

The rapid development of space and missile technology has

created an increased and specific need for data on radiant heat

transfer and thermal-radiation properties. There is special interest

in these properties of titanium and its alloys since they are favored

for space applications because of their low density_ high strength_

and relatively high melting points. The thermal-radiative properties

of titanium_ titanium alloys_ and other selected materials have been

collected by W. D. Wood_ H. W. Deem_ and G. F. Lucks (Ref. 65).

In a series of curves and supporting tables_ they present data on

total emittance (normal or hemispherical) and total reflectance as a

function of temperature_ and normal spectral emittance and spectral

reflectance as a function of temperature and wavelength. The effects

of polishing_ vacuum heating_ and surface oxidation in air at various

temperatures and times are shown. Figure 15 shows a typical curve

which presents the normal spectral emittance of Ti-6AI-4V alloy.

The curves for oxidized and polished surfaces also are shown.
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Wood_ Deem_ and Lucks (Ref. 65) have also presented thermal

radiative properties of various coatings on titanium and titanium

alloys. These coatings include enamels and paints_ oxide coatings

(other than oxidized or anodic)_ and metallic coatings. The coatings

cited are listed in Table XIX.

Janssen_ et al. (Ref. 43)_ in a study of reflectance of anodic

films found that the sodium hydroxide anodizing process (see p Z3)

worked well on Ti-5AI-Z.5Sn_ but produced no coating on the Ti-3AI-

IICr-13V alloy. The sulfuric acid process produced a very thin_

transparent_ deep-blue film on titanium. However_ it was so fragile

that it could be easily wiped off.

The reflectance values for the sulfuric acid_ sodium hydroxide_

and the phosphoric acid anodizing processes on the Ti-5AI-Z.5Sn

alloy are compared in Figure 16 along with the unanodized metal.

These three processes gave approximately the same reflectance

values beyond about 4 _except for an absorption band from 7 to 15 _z

with the phosphoric acid process. The sodium hydroxide process on

Ti-5AI-Z. 5Sn (Figure 16) produced a spectral reflectance almost

identical to that of the phosphoric acid process on Ti-3AI-IICr-13V.

The sulfuric acid process gave almost identical results on both alloys.

FIGURE 16. EFFECT OF ANODIZING PROCESS ON REFLECTANCE

OF Ti-5AI-Z. 5Sn ALLOY (REF. 43)
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TABLE XIX. COATINGS FOR THERMAL-RADIATION STUDIES OF TITANIUM

AND Ti-6A1-4V

Titanium

Coating Baking Treatment Material

Enamel or Paint

Chem Industries, high-temperature, silicone-

base aluminum paint

Coming XP-310, aluminized - silicone paint

DuLite 3-0, an oxide conversion coating of

the base metal

Measurements at 800 F

To 300 hr at 870 F

Measurements at 400

to 1800 F

Vita Var PVl00, a white paint with silicone

vehicle and TiO 2 pign-nent, 0.7-rail coating.

Pratt and Lambert 91-1524, butyl titanate

paint with aluminum pigment, 0.5 to 1.0-

rail coating

Rinshed-Mason, J 15984, a silicone paint

with aluminum pigment, 1.0-rail coating

Rinshed-Mason Q36K802, a silicone paint

with carbon-black pigment, 0.9-1nil

coating

Ditto

Oxide

Norton LA-9683, a refractory oxide, not

identified, flame sprayed on 12-mil

Nichrome V undercoat

Measured at 800 F

Norton LN 9684, a very dark nickel oxide,

flame sprayed on Nichrome V undercoat

Norton LA-9696, a tan Alunduln, 92 per

cent A1203, flame sprayed on Nichrome

V undercoat

Norton Rokide A, white 98.5 per cent

alumina, fame sprayed on 12-rail

Nichrome V undercoat

Ditto

Measured at 800 F and

1800 F

Measured at 800 F

Norton Rokide Z, stabilized ZrO 2 Measured at 800 F and

1800 F

Metal Coat

Engelhard Industries Bright Gold No.

6884, applied by spray

Fired at 1110 F, 5 rain,

measured at 480, 930,

and 1380 F

Ti-6A1-4V

Unalloyed

Unalloyed

Unalloyed

Unalloyed

Unalloyed

Unalloyed

Unalloyed

Ti-6A1-4V

Ti-6A1-4V

Ti-6A1-4V

Ti-6A1-4V

Unalloyed
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The reflectance values obtained with the phosphoric acid process

on Ti-5AI-Z.5Sn were somewhat higher beyond 7 microns than those

for the same process on Ti-3AI-IICr-13V. This effect apparently

is the result of a thicker oxide coating on the Ti-3AI-IICr-13V alloy.

The thickness measurements indicated that the oxide film was built

up more rapidly on the Ti-3Al-llCr-13V.

Measurements at elevated temperatures in vacuum had little

effect on the reflectance of sodium hydroxide anodized Ti-5AI-Z. 5Sn.

However_ for the phosphoric acid process on both titanium alloys_ a

marked decrease in reflectance at elevated temperatures was ob-

served at wave lengths less than i0 microns.

The effect of anodizing time on the reflectance of the coatings

was investigated for the sodium hydroxide process on Ti-5AI-Z. 5Sn

and the phosphoric acid process on both alloys. In all three cases

investigated_ the reflectance for the short anodizing time was nearly

identical to that for the standard time_ indicating that the anodizing

process was essentially completed in one-third of the standard ano-

dizing time. In the case of the phosphoric acid process_ voltage

rather than time was the controlling parameter.

Reflectance measurements on unanodized specimens of Ti-5AI-

Z. 5Sn indicated that electropolishing increased the reflectance about

i0 per cent. All the titanium specimens that were not electropolished

were pickled. It appeared that the effect of pickling was similar to

that of electropolishing in ali cases_ except for Ti-3AI-IICr-13V

anodized by the phosphoric acid process. In this case_ the electro-

polished specimen gave considerably lower reflectance_ especially

beyond IZ microns. It appeared that_ in this case_ electropolishing

activated the surface so that the coating formed more rapidly. This

same effect has been noted on hydrochloric acid etched anodized

magnesium alloy_ Mg-3. Z5Th-0.7Zr.

The effect of prior heat treatment at 1500 F in air was investi-

gated only for the phosphoric acid anodizing process on Ti-3AI-IICr-

13V_ and the same decrease in reflectance_ as that produced by

heating in vacuum_ was noted. Since this happened both in vacuum

and air_ it would appear that it was due to diffusion of metal atoms

from the substrate into the coating. A sodium hydroxide anodized

titanium specimen heat treated in this manner changed so greatly in

appearance that it was considered unusable.
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The estimated solar absorptance to infrared emittance ratios
(0_s/_) for titanium were generally high and varied from about 3.5
to 7. The sodium hydroxide process on Ti-5AI-Z.5Sn gave a solar
absorptance of about 0.7 and an infrared emittance of about 0. i,
making this an attractive combination for a solar collector. It also
withstood a temperature of 1300 F, in vacuum_ with little change in

reflectance.

Since most of the anodized titanium specimens had relatively

low reflectance at the short wavelengths and high reflectance at the

longer wavelengths_ they are attractive for use as solar collector

surfaces. The choice of material and process for a solar collector_

however, would depend on the operating temperature of the collector

surface and the radiant-energy density incident on the surface. The

sodium hydroxide process on Ti-5AI-Z. 5Sn would probably be attrac-

tive for most applications.

CONCLUSIONS AND RECOMMENDATIONS

Among the problem areas that require further investigation in

the surface treatment of titanium and titanium alloys are the coating

of these materials (a) to improve frictional properties and (b) to

provide stable, specific radiative properties.

If titanium alloys are to be used in bearing applications, there

needs to be improvement in the adherence of metallic and other

coatings applied to lessen seizing and galling of bearing surfaces

and improvement in lubricability. To date, success is confined to

rather moderate loads. Under heavy loads, platings and hard coat-

ings break down and bearing properties and wear resistance are lost.

Both improvement of coating techniques and application of postcoating

mechanical treatment and/or heat treatment of coatings to improve

performance should receive further investigation.

In the area of radiative properties, there is a general need for

more data on coated titanium and titanium alloys. Measurements

vary among investigators, probably because the method of application

of a given film is critical. Techniques leading to reproducible coat-

ings should be demonstrated.

There also is need for development of coatings with specific

properties fo_ particular applications. For example_ a solar-

orbiting spacecraft may require use of heat from the sun. In this
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case, some components of the craft would require a high-solar-
absorptance coating with low infrared emittance so as not to lose
heat back to space. In another component or craft, diametrically
opposite radiative properties may be called for. Here, the need
may be to remove as much heat as possible, as from an atomic-
powered spacecraft. Hence, the craft may have a coating with low
solar absorptance so as not to pick up heat from the sun and have
coated fins of high infrared emittance to dissipate excess heat.

It also appears that considerable more work could be devoted
toward the study of coatings capable of protecting titanium alloys
from atmospheric contamination during heat treatment. Very little
information was found regarding the protective qualities of presently
available coatings. Increasing interest in the use of titanium alloys
in solution-heat-treated and aged tempers shoul_l greatly increase
the need for coatings that will minimize contamination. Methods of
applying coatings, the degree of protection which can be expected,
and methods of removing the coating after heat treatment should be
thoroughly examined.

Finally, there is need for a more general dissemination of in-
formation regarding the behavior of coated titanium components in
service. Much of the data presently available is the result of labo-
ratory work. No doubt, these studies have been applied, with suc-
cess in many cases, to various production parts. This information
is not available, however.
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